Preview

Geodynamics & Tectonophysics

Advanced search

DEPLETED SSZ TYPE MANTLE PERIDOTITES IN PROTEROZOIC EASTERN SAYAN OPHIOLITES IN SIBERIA

https://doi.org/10.5800/GT-2017-8-3-0298

Abstract

N.L. Dobretsov et al. [1985] first described the rock complexes in Eastern Sayan as ophiolites. Ophiolites formed in Dunzhugur island arc and were obducted onto Gargan block, a Neoarchean crystalline basement of the Tuva-Mongolian Massif (TMM), as a single nappe [Khain et al., 2002; Kuzmichev, 2004]. Zircons from plagiogranite were dated at 1021±5 Ma by multigrain TIMS and 1020±1 Ma by Pb-Pb single-grains evaporation method [Khain et al., 2002]. Later [Kuzmichev, Larionov, 2013] analysed 12 grains of detrital zircons from gravelstone of the Dunzhugur formation and obtained 206Pb/238U ages from 844±8 to 1048±12 Ma. Careful examination of these data shows that 206Pb/238U ages for concordant zircons only vary from 962±11 to 1048±12 Ma.

About the Authors

Kuo-Lung Wang
Institute of Earth Sciences, Academia Sinica; National Taiwan University
Taiwan, Province of China

Taipei;

Department of Geosciences, Taipei



Zhuyin Chu
Institute of Geology and Geophysics, Chinese Academy of Sciences
China
Beijing


M. A. Gornova
A.P. Vinogradov Institute of Geochemistry, Siberian Branch of RAS
Russian Federation
Irkutsk


S. Dril
A.P. Vinogradov Institute of Geochemistry, Siberian Branch of RAS
Russian Federation
Irkutsk


V. A. Belyaev
Institute of Earth Sciences, Academia Sinica; A.P. Vinogradov Institute of Geochemistry, Siberian Branch of RAS
Taiwan, Province of China

Taipei;

Irkutsk



Kuan-Yu Lin
Institute of Earth Sciences, Academia Sinica; National Taiwan University
Taiwan, Province of China

Taipei;

Department of Geosciences, Taipei



S. Y. O’Reilly
Macquarie University
Australia

CCFS/GEMOC Key Centre, Department of Earth and Planetary Sciences, 

Sydney



References

1. Dick H.J.B., Bullen T., 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86 (1), 54–76. https://doi.org/10.1007/ BF00373711.

2. Dobretsov N.L., Konnikov E.G., Medvedev V.N., Sklyarov E.V., 1985. Ophiolites and olistostromes of the Eastern Sayan. In: N.L. Dobretsov (Ed.), Riphean – Early Paleozoic ophiolites of Northern Eurasia. Nauka, Novosibirsk, p. 34–58 (in Russian).

3. Khain E.V., Bibikova E.V., Kröner A., Zhuravlev D.Z., Sklyarov E.V., Fedotova A.A., Kravchenko-Berezhnoy I.R., 2002. The most ancient ophiolite of the Central Asian fold belt: U-Pb and Pb-Pb zircon ages for the Dunzhugur complex, Eastern Sayan, Siberia, and geodynamic implications. Earth and Planetary Science Letters 199 (3–4), 311–325. https://doi.org/10.1016/S0012-821X(02)00587-3.

4. Kovach V.P., Rytsk E.Yu., Salnikova E.B., Yakovleva S.Z., Fedoseenko A.M., Skopintsev V.G., Lykhin D.A., 2012. New U-Pb (TIMS) geochronological data on age of tonalities of the Sumsunur complex of the Gargan Glyba – to discussion on Palaeozoic organics in ancient sequences of the East Sayan. In: V Russian conference on isotope geochronology. Conference abstracts. Institute of Geology of Ore Deposits, Petrography, Mineralogy and Biochemistry, Russian Academy of Sciences, Moscow, p. 158–160 (in Russian).

5. Kuzmichev A.B., 2004. Tectonic History of the Tuva-Mongolian Massif: Early Baikalian, Late Baikalian and Early Caledonian stages. PROBEL-2000, Moscow, 192 p. (in Russian).

6. Kuzmichev A.B., Bibikova E.V., Zhuravlev D.Z., 2001. Neoproterozoic (~800 Ma) orogeny in the Tuva–Mongolia massif (Siberia): island arc–continent collision at the northeast Rodinia margin. Precambrian Research 110 (1–4), 109–126. https://doi.org/10.1016/S0301-9268(01)00183-8.

7. Kuzmichev A.B., Larionov A.N., 2013. Neoproterozoic island arcs in East Sayan: duration of magmatism (from U–Pb zircon dating of volcanic clastics). Russian Geology and Geophysics 54 (1), 34–43. https://doi.org/10.1016/j.rgg. 2012.12.003.

8. McDonough W.F., Sun S.-S., 1995. The composition of the Earth. Chemical Geology 120 (3–4), 223–253. https://doi.org/ 10.1016/0009-2541(94)00140-4.

9. O'Reilly S.Y., Zhang M., Griffin W.L., Begg G., Hronsky J., 2009. Ultradeep continental roots and their oceanic remnants: A solution to the geochemical “mantle reservoir” problem? Lithos 112 (Supplement 2), 1043–1054. https://doi.org/ 10.1016/j.lithos.2009.04.028.

10. Parkinson I.J., Pearce J.A., 1998. Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting. Journal of Petrology 39 (9), 1577–1618. https://doi.org/10.1093/petroj/39.9.1577.

11. Sklyarov E.V., Kovach V.P., Kotov A.B., Kuzmichev A.B., Lavrenchuk A.V., Perelyaev V.I., Shchipansky A.A., 2016. Boninites and ophiolites: problems of their relations and petrogenesis of boninites. Russian Geology and Geophysics 57 (1), 127–140. https://doi.org/10.1016/j.rgg.2016.01.009.


Review

For citations:


Wang K., Chu Zh., Gornova M.A., Dril S., Belyaev V.A., Lin K., O’Reilly S.Y. DEPLETED SSZ TYPE MANTLE PERIDOTITES IN PROTEROZOIC EASTERN SAYAN OPHIOLITES IN SIBERIA. Geodynamics & Tectonophysics. 2017;8(3):583-587. https://doi.org/10.5800/GT-2017-8-3-0298

Views: 815


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)