Preview

Геодинамика и тектонофизика

Расширенный поиск

NEW DATA ABOUT AGE AND GEODYNAMIC NATURE OF HAMSARA TERRANE

https://doi.org/10.5800/GT-2017-8-3-0290

Аннотация

On the basis of isotopic-geochemical studies and analysis of geological evidences heterogeneity of Hamsara terrane has been determined. Formation of stationed metamorphosed layers underlying the Hamsara formation occurred not earlier than 630 Ma, probably in the oceanic island arc system. Acidic effusive rocks of Hamsara formation were formed in intraplate condition in the range of 462–464 Ma. Sediments of Hamsara formation couldn’t be the part of island arc system and belong to completely other period of geological region development. This is the time of completion of accretion-collision events in the northern part of Altai-Sayan fragment of CAFB adjacent to the Siberian platform.

Об авторах

S. I. Shkolnik
Institute of the Earth’s Crust, Siberian Branch of RAS
Россия
Irkutsk


L. Z. Reznitsky
Institute of the Earth’s Crust, Siberian Branch of RAS
Россия
Irkutsk


E. F. Letnikova
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of RAS
Россия
Novosibirsk


A. I. Proshenkin
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of RAS
Россия
Novosibirsk


Список литературы

1. Berzin N.A., Kungurtsev L.V., 1996. Geodynamic interpretation of Altay-Sayan geological complexes. Geologiya i Geofizika (Russian Geology and Geophysics) 37 (1), 63–81.

2. Kovach V., Salnikova E., Wang K.-L., Jahn B.-M., Chiu H.-Y., Reznitskiy L., Kotov A., Iizuka Y., Chung S.-L, 2013. Zircon ages and Hf isotopic constraints on sources of clastic metasediments of the Slyudyansky high-grade complex, southeastern Siberia: Implication or continental growth and evolution of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences 62, 18–36. https://doi.org/10.1016/j.jseaes.2011.08.008.

3. Kozakov I.K., Salnikova E.B., Natman A., Kovach V.P., Kotov A.B., Podkovyrov V.N., Plotkina Y.V., 2005. Metasedimentary complexes of Tuva-Mongolian Massif: ages, provenances, and tectonic position. Stratigraphy and Geological Correlations 13 (1), 1–20.

4. Kuzmichev A., Kröner A., Hegner E., Dunyi Liu., Yusheng Wan, 2005. The Shishid ophiolite, northern Mongolia: A key to the reconstruction of a Neoproterozoic island-arc system in Central Asia. Precambrian Research 138 (1–2), 125–150. https://doi.org/10.1016/j.precamres.2005.04.002.

5. Kuzmichev A.B., 2004. Tectonic Evolution of the Tuva–Mongolian Massif: Early Baikal, Late Baikal, and Early Caledonian Stages. PROBEL-2000, Moscow, 192 p. (in Russian).

6. Kuzmichev A.B., Larionov A.N., 2011. The Sarkhoi Group in East Sayan: Neoproterozoic (~770–800 Ma) volcanic belt of the Andean type. Russian Geology and Geophysics 52 (7), 685–700. https://doi.org/10.1016/j.rgg.2011.06.001.

7. Mongush A.A., Lebedev V.I., Kovach V.P., Salnikova E.B., Drushkova E.K., Yakovleva S.Z., Plotkina Yu.V., Zagornaya N.Y., Travin A.V., Serov P.A., 2011. The tectonomagmatic evolution of structure-lithologic complexes in Tannu-Ola zone, Tuva, in the Late Vendian – Early Cambrian (from geochemical, Nd isotope, and geochronological data). Russian Geology and Geophysics 52 (5), 503–516. https://doi.org/10.1016/j.rgg.2011.04.003.

8. Reznitsky L.Z., Shkol’nik S.I., Ivanov A.V., Demonterova E.I., Letnikova E.F., Hung C.-H., Chung S.-L., 2015. The Hercynian Ikat thrust in the Transbaikalia segment of the Central Asian Fold Belt. Russian Geology and Geophysics 56 (12), 1671–1684. https://doi.org/10.1016/j.rgg.2015.11.002.

9. Rojas-Agramonte Y., Kröner A., Demoux A., Xia X., Wang W., Donskaya T., Liu T., Sun M., 2011. Detrital and xenocrystic zircon ages from Neoproterozoic to Palaeozoic arc terranes of Mongolia: significance for the origin of crustal fragments in the Central Asian Orogenic Belt. Gondwana Research 19 (3), 751–763. https://doi.org/10.1016/j.gr. 2010.10.004.

10. Rudnev S.N., 2013. Early Paleozoic Granitoid Magmatism of the Altay-Sayan Folded Area and Lake Zone in Western Mongolia. Publishing House of SB RAS, Novosibirsk, 300 p. (in Russian).

11. Shkolnik S.I., Ivanov A.V., Reznitskii L.Z., Letnikova E.F., He H., Yu Z., Vishnevskaya I.A., Barash I.G., 2017a. Middle Ordovician effusive of the Hamsara terrane as indicated complex. Russian Geology and Geophysics (in press).

12. Shkolnik S.I., Letnikova E.F., Maslov A.V., Buyantuev M.D., Peznitskii L.Z, Barash I.G., 2017b. Vendian manganese basin of the Ikat terrane: depositional environment and provenance. Doklady Earth Sciences 475 (1) (in press).

13. Shkolnik S.I., Stanevich A.M., Reznitskii L.Z., Savelieva V.B., 2016. New data about structure and time of formation of the Khamar-Daban terrane: U-Pb LA-ICP-MS zircon ages. Stratigraphy and Geological Correlations 24 (1), 19–38. https://doi.org/10.1134/S086959381506009X.

14. Vorontsov A.A., Sandimirov I.V., 2010. The Devonian magmatism in the Kropotkin ridge (East Sayan) and sources of basites: Geological, geochemical, and Sr-Nd isotope data. Russian Geology and Geophysics 51 (8), 833–845. https://doi.org/10.1016/j.rgg.2010.07.002.


Рецензия

Для цитирования:


Shkolnik S.I., Reznitsky L.Z., Letnikova E.F., Proshenkin A.I. NEW DATA ABOUT AGE AND GEODYNAMIC NATURE OF HAMSARA TERRANE. Геодинамика и тектонофизика. 2017;8(3):557-560. https://doi.org/10.5800/GT-2017-8-3-0290

For citation:


Shkolnik S.I., Reznitsky L.Z., Letnikova E.F., Proshenkin A.I. NEW DATA ABOUT AGE AND GEODYNAMIC NATURE OF HAMSARA TERRANE. Geodynamics & Tectonophysics. 2017;8(3):557-560. https://doi.org/10.5800/GT-2017-8-3-0290

Просмотров: 717


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)