Preview

Геодинамика и тектонофизика

Расширенный поиск

MG-CR-TYPE SPINEL PERIDOTITES IN THE WESTERN PART OF THE CENTRAL ASIAN OROGENIC BELT (ZHELTAU MASSIF, SOUTHERN KAZAKHSTAN): THE FIRST DATA ON P-T PATHS AND PROTOLITHS

https://doi.org/10.5800/GT-2017-8-3-0283

Полный текст:

Аннотация

Ultramafic and mafic lithologies, attributed to the orogenic terranes and formed under ultrahigh-pressure (UHP) and high-pressure (HP) conditions, have been intensively studied for the last decades. It is mainly related to a particular significance of these rocks for geodynamics, since they contain an important information on the fluid-rock interactions and element redistribution in the subduction-collision zones and could shed the light on the tectonic evolution of the studied region.

Об авторах

A. V. Pilitsyna
Geological Institute of RAS
Россия
Moscow


A. A. Tretyakov
Geological Institute of RAS
Россия
Moscow


T. A. Alifirova
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of RAS
Россия
Novosibirsk


K. E. Degtyarev
Geological Institute of RAS
Россия
Moscow


Список литературы

1. Alexeiev D.V., Ryazantsev A.V., Kröner A., Tretyakov A.A., Xia X., Liu D.Y., 2011. Geochemical data and zircon ages for rocks in a high-pressure belt of Chu-Yili mountains, southern Kazakhstan: implications for the earliest stages of accretion in Kazakhstan and the Tianshan. Journal of Asian Earth Sciences 42 (5), 805–820. https://doi.org/ 10.1016/j.jseaes.2010.09.004.

2. Bodinier J.-L., Godard M., 2003. Orogenic, ophiolitic and abyssal peridotites. In: H.D. Holland, K.K. Turekian (Eds.), The mantle and core. Treatise on Geochemistry, vol. 2, p. 103–170. https://doi.org/10.1016/B0-08-043751-6/ 02004-1.

3. Carswell D.A., Harvey M.A., Al-Samman A., 1983. The petrogenesis of constraining Fe-Ti and Mg-Cr garnet peridotite types in the high grade gneiss complex of Western Norway. Bulletin de minéralogie 106 (6), 727–750.

4. Connolly J.A.D., 2005. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters 236 (1–2), 524–541. https:// doi.org/10.1016/j.epsl.2005.04.033.

5. Cruciani G., Franceschelli M., Groppo C., Brogioni N., Vaselli O., 2008. Formation of clinopyroxene + spinel and amphibole + spinel symplectites in coronitic gabbros from the Sierra de San Luis (Argentina): a key to post-magmatic evolution. Journal of Metamorphic Geology 26 (7), 759–774. https://doi.org/10.1111/j.1525-1314.2008.00786.x.

6. Degtyarev K.E., Yakubchuk A.S., Tretyakov A.A., Kotov A.B., Kovach V.P., 2017. Precambrian geology of the Kazakh Uplands and Tien Shan: An overview. Gondwana Research 47, 44–75. https://doi.org/10.1016/j.gr.2016.12.014.

7. Godard G., Martin S., Prosser G., Kienast J.R., Morten L., 1996. Variscan migmatites, eclogites and garnet-peridotites of the Ulten zone, Eastern Austroalpine system. Tectonophysics 259 (4), 313–341. https://doi.org/10.1016/0040- 1951(95)00145-X.

8. Godard M., Awaji S., Hansen H., Hellebrand E., Brunelli D., Johnson K., Yamasaki T., Maeda J., Abratis M., Christie D., Kato Y., Mariet C., Rosner M., 2009. Geochemistry of a long in-situ section of intrusive slow-spread oceanic lithosphere: Results from IODP Site U1309 (Atlantis massif, 30°N Mid-Atlantic-Ridge). Earth and Planetary Science Letters 279 (1–2), 110–122. https://doi.org/10.1016/j.epsl.2008.12.034.

9. Hegner E., Klemd R., Kröner A., Corsini M., Alexeiev D.V., Iaccheri L.M., Zack T., Dulski P., Xia X., Windley B.F., 2010. Mineral ages and P–T conditions of Late Paleozoic high-pressure eclogite and provenance of melange sediments from Atbashi in the south Tianshan orogen of Kyrgyzstan. American Journal of Science 310 (9), 916–950. https:// doi.org/10.2475/09.2010.07.

10. Janak M., Froitzheim N., Vrabec M., Krogh Ravna E.J., De Hoog J.C.M., 2006. Ultrahigh-pressure metamorphism and exhumation of garnet peridotite in Pohorje, Eastern Alps. Journal of Metamorphic Geology 24 (1), 19–31. https:// doi.org/10.1111/j.1525-1314.2005.00619.x.

11. Katayama I., Maruyama S., Parkinson C.D., Terada K., Sano Y., 2001. Ion micro-probe U-Pb zircon geochronology of peak and retrograde stages of ultrahigh-pressure metamorphic rocks from the Kokchetav massif, northern Kazakhstan. Earth and Planetary Science Letters 188 (1–2), 185–198. https://doi.org/10.1016/S0012-821X(01) 00319-3.

12. Meyer M., Klemd R., Konopelko D., 2013. High-pressure mafic oceanic rocks from the Makbal complex, Tianshan mountains (Kazakhstan & Kyrgyzstan): implications for the metamorphic evolution of a fossil subduction zone. Lithos 177, 207–225. https://doi.org/10.1016/j.lithos.2013.06.015.

13. Obata M., Ozawa K., Naemura K., Miyake A., 2012. Isochemical breakdown of garnet in orogenic garnet peridotite and its implication to reaction kinetics. Mineralogy and Petrology 107 (6), 881–895. https://doi.org/10.1007/s00710- 012-0260-4.

14. Orozbaev R.T., Takasu A., Bakirov A.B., Tagiri M., Sakiev K.S., 2010. Metamorphic history of eclogites and country rock gneisses in the Aktyuz area, Northern Tien-Shan, Kyrgyzstan: a record from initiation of subduction through to oceanic closure by continent–continent collision. Journal of Metamorphic Geology 28 (3), 317–339. https:// doi.org/10.1111/j.1525-1314.2010.00865.x.

15. Pilitsyna A.V., Tretyakov A.A, Degtyarev K.E., Cuthbert S.J., Batanova V.G., Kovalchuk E.V., 2017. Eclogites and garnet clinopyroxenites in the Anrakhai complex, Central Asian Orogenic Belt, Southern Kazakhstan: P-T evolution, protoliths and some geodynamic implications. Journal of Asian Earth Sciences (in press). https://doi.org/10.1016/ j.jseaes.2017.03.027.

16. Reverdatto V.V., Selyatitsky A.Yu., Carswell D.A., 2008. Geochemical distinctions between “crustal” and mantle-derived peridotites/pyroxenites in high/ultrahigh pressure metamorphic complexes. Russian Geology and Geophysics 49 (2), 73–90. https://doi.org/10.1016/j.rgg.2008.01.002.

17. Sarp H., Bertrand J., McNear E., 1976. Vuagnatite, CaAl(OH)SiO4, a new natural calcium aluminum nesosilicate. American Mineralogist 61 (9–10), 825–330.

18. Zhang L., Du J.-X., Lü Z., Yang X., Gou L.-L., Xia B., Chen Z.-Y., Wei C.-J., Song S.G., 2013. A huge oceanic-type UHP metamorphic belt in southwestern Tianshan, China: Peak metamorphic age and P-T path. Chinese Scientific Bulletin 58 (35), 4378–4383. https://doi.org/10.1007/s11434-013-6074-x.


Для цитирования:


Pilitsyna A.V., Tretyakov A.A., Alifirova T.A., Degtyarev K.E. MG-CR-TYPE SPINEL PERIDOTITES IN THE WESTERN PART OF THE CENTRAL ASIAN OROGENIC BELT (ZHELTAU MASSIF, SOUTHERN KAZAKHSTAN): THE FIRST DATA ON P-T PATHS AND PROTOLITHS. Геодинамика и тектонофизика. 2017;8(3):533-536. https://doi.org/10.5800/GT-2017-8-3-0283

For citation:


Pilitsyna A.V., Tretyakov A.A., Alifirova T.A., Degtyarev K.E. MG-CR-TYPE SPINEL PERIDOTITES IN THE WESTERN PART OF THE CENTRAL ASIAN OROGENIC BELT (ZHELTAU MASSIF, SOUTHERN KAZAKHSTAN): THE FIRST DATA ON P-T PATHS AND PROTOLITHS. Geodynamics & Tectonophysics. 2017;8(3):533-536. https://doi.org/10.5800/GT-2017-8-3-0283

Просмотров: 108


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)