Preview

Геодинамика и тектонофизика

Расширенный поиск

ВЕЩЕСТВЕННЫЕ И ТЕРМАЛЬНЫЕ РАЗЛИЧИЯ МЕЖДУ ЛИТОСФЕРНОЙ И АСТЕНОСФЕРНОЙ МАНТИЕЙ И ИХ ВЛИЯНИЕ НА КОНТИНЕНТАЛЬНУЮ ДЕЛАМИНАЦИЮ

https://doi.org/10.5800/GT-2015-6-2-0180

Полный текст:

Аннотация

В коллизионных орогенах нижняя часть литосферы может отслаиваться (деламинировать) из-за возникшей инверсии плотностей между астеносферой и более холодной утолщенной литосферной мантией. Обычно в моделях деламинации не рассматриваются плотностные изменения в коре и литосферной мантии, обусловленные фазовыми переходами и вариациями минерального состава при изменении Р-Т условий. Мы акцентируем внимание на том , что эти эффекты могут быть очень важными, возможно преобладающими, по отношению к эффекту простого изменения термальной структуры мантии. В статье изложены результаты численного моделирования с помощью программного комплекса «Селектор» эклогитизации базальтов нижней коры, а также изменения фазового состава и плотности нижележащего перидотита, обусловленных тектоническим утолщением литосферы и ее погружением в астеносферу. Для нижней коры с увеличением глубинности основные гранулиты (базальты) переходят в эклогиты, При этом на принятой границе – кора-мантия (Р=20 кбар) отмечается инверсия плотностей, так как новообразованный эклогит на 6 % тяжелее нижележащего перидотита (абиссального перидотита по Ф. Бойду). Разница в плотностях является потенциальной энергией деламинации эклогитовой части коры. По условиям моделирования нижней границе литосферы соответствуют Р=70 кбар и Т=1300 °С. Принимая адиабатическое распределение температуры в астеносфере, ее значение при данных параметрах оценивается в пределах 1350–1400 °С. Инверсия плотности в сухих условиях достигается только при изохимичности составов литосферы и астеносферы за счет перепада температур в 100 °С. Однако разница в плотностях при этом составляет всего 0.0022 %. Вещественные различия двух других модельных составов астеносферы (примитивная мантия, лерцолит КН) по отношению к литосфере (абиссальному перидотиту) не компенсируются более высокой температурой. Плотность астеносферы получается более высокой, чем плотность низов литосферы. Инверсия плотностей достигается, если допустить присутствие в составе астеносферы, аналогичном примитивной мантии, или лерцолиту КН, соответственно, не менее 1.40 и 0.83 мас. % условно нейтрального флюида. Такое количество флюида явно завышено и совершенно не согласуется с современными оценками содержания флюидов в мантии. Следовательно, только флюидсодержащая астеносфера, отвечающая составу деплетированной мантии срединно-океанических хребтов (DMM) – резервуару, существующему с докембрия, – является наиболее подходящей средой для деламинации утолщенной литосферы. В настоящей модели абиссальный перидотит ближе всего соответствует ДММ по отношению к другим более фертильным составам астеносферы. Адвекция тепла, связанная с подъемом флюидосодержащих плюмов, далеко отстоящих по времени от коллизионных событий, также может вызывать гравитационную нестабильность орогенной и кратонной литосферы и ее деламинацию.

Об авторах

А. И. Киселев
Институт земной коры СО РАН, Иркутск, Россия
Россия

докт. геол.-мин. наук, в.н.с.
Институт земной коры СО РАН
664033, Иркутск, ул. Лермонтова, 128, Россия
Тел.: 8(3952)425434



А. И. Иванов
Институт земной коры СО РАН, Иркутск, Россия
Россия

докт. геол.-мин. наук, в.н.с.
Институт земной коры СО РАН
664033, Иркутск, ул. Лермонтова, 128, Россия
Тел.: 8(3952)427117



Б. С. Данилов
Институт земной коры СО РАН, Иркутск, Россия
Россия

канд. геол.-мин. наук, н.с.
Институт земной коры СО РАН
664033, Иркутск, ул. Лермонтова, 128, Россия
Тел.: 8(3952)511680



Список литературы

1. Anderson D.L., 1994. The sublithospheric mantle as the source of continental flood basalts; the case against the continental lithosphere and plume head reservoirs. Earth and Planetary Science Letters 123 (1), 269–280. http://dx.doi. org/10.1016/0012-821X(94)90273-9.

2. Anderson D.L., 2005. Large igneous provinces, delamination, and fertile mantle. Elements 1 (5), 271–275. http://dx.doi. org/10.2113/gselements.1.5.271.

3. Basaltic Volcanism Study Project, 1981. Basaltic Volcanism on the Terrestrial Planets. Pergamon Press, Inc., New York, 1286 p.

4. Beghoul N., Barazangi M., Isacks B.L., 1993. Lithospheric structure of Tibet and western North America: Mechanisms of uplift and a comparative study. Journal of Geophysical Research 98 (B2), 1997–2016. http://dx.doi.org/10.1029/ 92JB02274.

5. Bird P., 1979. Continental delamination and the Colorado Plateau. Journal of Geophysical Research 84 (B13), 7561–7571. http://dx.doi.org/10.1029/JB084iB13p07561.

6. Boyd F.R., 1989. Compositional distinction between oceanic and cratonic lithosphere. Earth and Planetary Science Letters 96 (1), 15–26. http://dx.doi.org/10.1016/0012-821X(89)90120-9.

7. Dewey J.F., 1995. The fabrics of orogens. In: Centennial Geocongress, South African Geological Society, Extended Ab-stracts, vol. 1, p. 291–294.

8. Dreibus G., Jagoutz E., Wänke H., 1997. Water in the Earth’s mantle. Geologiya i Geofizika (Russian Geology and Geophysics) 38 (1), 269–275.

9. England P., Houseman G., 1989. Extension during continental convergence, with application to the Tibetan Plateau. Journal of Geophysical Research 94 (B12), 17561–17579. http://dx.doi.org/10.1029/JB094iB12p17561.

10. Gao Sh., Zhang B., Jin Zh., Kern H., 1999. Lower crustal delamination in the Qinling-Dabie orogenic belt. Science in China, Series D: Earth Sciences 42 (4), 423–433.

11. Gao Sh., Zhang J.F., Xu W.L., Liu Y.Sh., 2009. Delamination and destruction of the North China Craton. Chinese Science Bulletin 54 (19), 3367–3378. http://dx.doi.org/10.1007/s11434-009-0395-9.

12. Gîrbacea R., Frisch W., 1998. Slab in the wrong place: lower lithospheric mantle delamination in the last stage of the Eastern Carpatian subduction retreat. Geology 25 (7), 611–614. http://dx.doi.org/10.1130/0091-7613(1998)026 <0611:SITWPL>2.3.CO;2.

13. Holland T.J.B., Powell R., 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology 16 (3), 309–343. http://dx.doi.org/10.1111/j.1525-1314.1998.00140.x.

14. Houseman J.A., McKenzie D.P., Molnar P., 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. Journal of Geophysical Research 86 (B7), 6115–6132. http://dx.doi.org/10.1029/JB086iB07p06115.

15. Jordan Th.H., 1978. Composition and development of the continental tectosphere. Nature 274 (5671), 544–548. http://dx.doi.org/10.1038/274544a0.

16. Karpov I.K., Chudnenko K.V., Kulik D.A., 1997. Modeling chemical mass transfer in geochemical processes; thermodynamic relations, conditions of equilibria and numerical algorithms. American Journal of Science 297 (8), 767–806. http://dx.doi.org/10.2475/ajs.297.8.767.

17. Kay R.W., Kay S.M., 1993. Delamination and delamination magmatism. Tectonophysics 219 (1), 177–189. http://dx.doi. org/10.1016/0040-1951(93)90295-U.

18. Marotta A.M., Fernandez M., Sabadini R., 1998. Mantle unrooting in collisional settings. Tectonophysics 296 (1), 31–46. http://dx.doi.org/10.1016/S0040-1951(98)00134-6.

19. McDonough W.F., 1990. Constraints on the composition of the continental lithospheric mantle. Earth and Planetary Science Letters 101 (1), 1–18. http://dx.doi.org/10.1016/0012-821X(90)90119-I.

20. Menzies M.A., 1989. Cratonic, circumcratonic and oceanic mantle domains beneath the western United States. Journal of Geophysical Research 94 (B6), 7899–7915. http://dx.doi.org/10.1029/JB094iB06p07899.

21. Menzies M.A., Bodinier J.L., Thirlwall M., Downes H., 1991. Astenosphere-lithosphere relationships within orogenic massifs. In: Proceedings of the Fifth International Kimberlite Conference. Araxá, Brazil, p. 281–284.

22. O’Reilly S.Y., Griffin W.L., Dyomani Y., 1998. Are lithosphere forever? In: Proceedings of the 7th International Kimberlite Conference. Cape Town, South Africa, p. 646–648.

23. Peccerillo A., Lustrino M., 2005. Compositional variations of Plio-Quaternary magmatism in circum-Tyrrhenian area: deep versus shallow mantle processes. In: G.R. Foulger, J.H. Natland, D.S. Presnall, D.L. Anderson (Eds.), Plates,

24. Plumes and Paradigms. Geological Society of America Special Paper, vol. 338, p. 421–434. http://dx.doi.org/10. 1130/0-8137-2388-4.421.

25. Pollack H.N., Chapman D.S., 1977. On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics 38 (3), 279–296. http://dx.doi.org/10.1016/0040-1951(77)90215-3.

26. Ringwood A.E., 1966. The chemical composition and origin of the Earth. In: P.M. Harley (Ed.), Advances in Earth Science. MIT Press, Cambridge, p. 287–356.

27. Ringwood A.E., Green D.H., 1969. Phase Transitions. In: P.J. Hart (Ed.), The Earth’s Crust and Upper Mantle. AGU Geophysical Monograph Series, vol. 13, p. 637–649. http://dx.doi.org/10.1029/GM013p0637.

28. Rudnik R.L., 1995. Making continental crust. Nature 378 (6557), 571–577. http://dx.doi.org/10.1038/378571a0.

29. Sobolev S.V., Babeyko A.Y., 1989. Phase transformations in the lower continental crust and its seismic structure. In: R.F. Mereu, S. Mueller, D.M. Fountain (Eds.), Properties and processes of Earth's lower crust. AGU Geophysical Monograph Series, vol. 51, p. 311–320. http://dx.doi.org/10.1029/GM051p0311.

30. Yuen D.A., Fleitout L., 1985. Thinning of the lithosphere by small-scale convection destabilization. Nature 313 (5998), 125–128. http://dx.doi.org/10.1038/313125a0.

31. Zotov I.A., 1989. About sources of the transmagmatic fluids. In: Physico-chemical analysis of mineral generation. Nauka, Moscow, p. 38–45 (in Russian) [Зотов И.А. К проблеме источника трансмагматических флюидов // Физико-химический анализ процессов минералообразования. М.: Наука, 1989. С. 38–45].


Для цитирования:


Киселев А.И., Иванов А.И., Данилов Б.С. ВЕЩЕСТВЕННЫЕ И ТЕРМАЛЬНЫЕ РАЗЛИЧИЯ МЕЖДУ ЛИТОСФЕРНОЙ И АСТЕНОСФЕРНОЙ МАНТИЕЙ И ИХ ВЛИЯНИЕ НА КОНТИНЕНТАЛЬНУЮ ДЕЛАМИНАЦИЮ. Геодинамика и тектонофизика. 2015;6(2):255–265. https://doi.org/10.5800/GT-2015-6-2-0180

For citation:


Kiselev A.I., Ivanov A.V., Danilov B.S. COMPOSITIONAL AND THERMAL DIFFERENCES BETWEEN LITHOSPHERIC AND ASTHENOSPHERIC MANTLE AND THEIR INFLUENCE ON CONTINENTAL DELAMINATION. Geodynamics & Tectonophysics. 2015;6(2):255–265. (In Russ.) https://doi.org/10.5800/GT-2015-6-2-0180

Просмотров: 557


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)