PYROXENITE VEINS WITHIN SSZ PERIDOTITES – EVIDENCE OF MELT-ROCK INTERACTION (EGIINGOL MASSIF), MAJOR AND TRACE ELEMENT COMPOSITION OF MINERALS
https://doi.org/10.5800/GT-2017-8-3-0269
Аннотация
Об авторах
A. A. KarimovРоссия
Irkutsk
M. A. Gornova
Россия
Irkutsk
V. A. Belyaev
Россия
Irkutsk;
Taipei
Список литературы
1. Belousov I.A., Batanova V.G., Savelieva G.N., Sobolev A.V., 2009. Evidence for the suprasubduction origin of mantle section rocks of Voykar ophiolite, Polar Urals. Doklady Earth Sciences 429 (1), 1394–1398. https://doi.org/10.1134/ S1028334X09080340.
2. Cameron W.E., 1985. Petrology and origin of primitive lavas from the Troodos ophiolite, Cyprus. Contributions to Mineralogy and Petrology 89 (2), 239–255. https://doi.org/10.1007/BF003794574/S1028334X09080340.
3. Gordienko I.V., Filimonov A.V., Minina O.R., Gornova M.A., Medvedev A.Y., Klimuk V.S., Tomurtogoo O., 2007. Dzhida island-arc system in the Paleoasian ocean: structure and main stages of Vendian-Paleozoic geodynamic evolution. Russian Geology and Geophysics 48 (1), 91–106. https://doi.org/10.1016/j.rgg.2006.12.009.
4. Gornova M.A., Kuz’min M.I., Gordienko I.V., Medvedev A.Y., Al’mukhamedov A.I., 2008. Specific features of the composition of suprasubduction peridotites with reference to the Egiingol massif. Doklady Earth Sciences 421 (1), 782–786. https://doi.org/10.1134/S1028334X08050152.
5. Gornova M.A., Kuz’min M.I., Gordienko I.V., Medvedev A.Y., Al’mukhamedov A.I., 2010. Geochemistry and petrology of the Egiingol peridotite massif: Reconstruction of melting conditions and interaction with the boninite melt. Litosfera (Lithosphere) (5), 20–36 (in Russian).
6. Ishii T., 1992. Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, Leg 125. Proceedings of the Ocean Drilling Program, Scientific Results 125, 445–485. https://doi.org/ 10.2973/odp.proc.sr.125.129.1992.
7. Johnson K., Dick H.J., Shimizu N., 1990. Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research: Solid Earth 95 (B3), 2661–2678. https://doi.org/10.1029/ JB095iB03p02661.
8. Kelemen P.B., Hart S.R., Bernstein S., 1998. Silica enrichment in the continental upper mantle via melt/rock reaction. Earth and Planetary Science Letters 164 (1–2), 387–406. https://doi.org/10.1016/S0012-821X(98)00233-7.
9. Khedr M.Z., Arai S., Tamura A., Morishita T., 2010. Clinopyroxenes in high-P metaperidotites from Happo-O'ne, central Japan: implications for wedge-transversal chemical change of slab-derived fluids. Lithos 119 (3), 439–456. https://doi.org/10.1016/j.lithos.2010.07.021.
10. Muntener O., Hermann J., Trommsdorf V., 2000. Cooling history and exhumation of lower-crustal granulite and upper mantle (Malenco, Eastern Central Alps). Journal of Petrology 41 (2), 175–200. https://doi.org/10.1093/petrology/ 41.2.175.
11. Parkinson I.J., Pearce J.A., 1998. Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting. Journal of Petrology 39 (9), 1577–1618. https://doi.org/0.1093/petroj/39.9.1577.
12. Pawley A.R., 1998. The reaction talc + forsterite = enstatite + H2O: New experimental results and petrological implications. American Mineralogist 83 (1–2), 51–57. https://doi.org/10.2138/am-1998-1-205.
13. Pearce J.A., Barker P.F., Edwards S.J., Parkinson I.J., Leat P.T., 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc–basin system, South Atlantic. Contributions to Mineralogy and Petrology 139 (1), 36–53. https://doi.org/10.1007/s004100050572.
14. Säntti J., Kontinen A., Sorjonen-Ward P., Johanson B., Pakkanen L., 2006. Metamorphism and chromite in serpentinized and carbonate-silica-altered peridotites of the Paleoproterozoic Outokumpu-Jormua Ophiolite Belt, Eastern Finland. International Geology Review 48 (6), 494–546. https://doi.org/10.2747/0020-6814.48.6.494.
15. Sobolev A.V., Danyushevsky L.V., 1994. Petrology and geochemistry of boninites from the north termination of the Tonga Trench: constraints on the generation conditions of primary high-Ca boninite magmas. Journal of Petrology 35 (5), 1183–1211. https://doi.org/10.1093/petrology/35.5.1183.
16. Sobolev A.V., Migdisov A.A., Portnyagin M.V., 1996. Incompatible element partitioning between clinopyroxene and basalt liquid revealed by the study of melt inclusions in minerals from Troodos lavas, Cyprus. Petrology 4 (3), 307–317.
17. Sobolev A.V., Portnyagin M.V., Dmitriev L.V., Tsameryan O.P., Danyushevsky L.V., Kononkova N.N., Schimizu N., Robinson P.T., 1993. Petrology of ultramafic lavas and associated rocks of the Troodos massif, Cyprus. Petrologiya (Petrology) 1 (4), 331–361 (in Russian).
18. Tamura A., Arai S., 2006. Harzburgite–dunite–orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle. Lithos 90 (1), 43–56. https://doi.org/10.1016/j.lithos.2005.12.012.
Рецензия
Для цитирования:
Karimov A.A., Gornova M.A., Belyaev V.A. PYROXENITE VEINS WITHIN SSZ PERIDOTITES – EVIDENCE OF MELT-ROCK INTERACTION (EGIINGOL MASSIF), MAJOR AND TRACE ELEMENT COMPOSITION OF MINERALS. Геодинамика и тектонофизика. 2017;8(3):483-488. https://doi.org/10.5800/GT-2017-8-3-0269
For citation:
Karimov A.A., Gornova M.A., Belyaev V.A. PYROXENITE VEINS WITHIN SSZ PERIDOTITES – EVIDENCE OF MELT-ROCK INTERACTION (EGIINGOL MASSIF), MAJOR AND TRACE ELEMENT COMPOSITION OF MINERALS. Geodynamics & Tectonophysics. 2017;8(3):483-488. https://doi.org/10.5800/GT-2017-8-3-0269