Preview

Геодинамика и тектонофизика

Расширенный поиск

GEOCHEMISTRY AND ORIGIN OF THE EASTERN SAYAN OPHIOLITES, TUVA-MONGOLIAN MICROCONTINENT (SOUTHERN SIBERIA)

https://doi.org/10.5800/GT-2017-8-3-0250

Полный текст:

Аннотация

The Eastern Sayan ophiolites (1020 Ma) of the Tuva-Mongolian microcontinent are believed to be the most ancient ophiolite of the Central Asian Orogenic Belt [Khain et al., 2002].

Об авторах

V. A. Belyaev
Institute of Earth Sciences, Academia Sinica; A.P. Vinogradov Institute of Geochemistry, Siberian Branch of RAS
Тайвань

Taipei;

Irkutsk



K.-L. Wang
Institute of Earth Sciences, Academia Sinica; Department of Geosciences, National Taiwan University
Тайвань
Taipei


M. A. Gornova
A.P. Vinogradov Institute of Geochemistry, Siberian Branch of RAS
Россия
Irkutsk


S. I. Dril’
A.P. Vinogradov Institute of Geochemistry, Siberian Branch of RAS
Россия
Irkutsk


A. A. Karimov
A.P. Vinogradov Institute of Geochemistry, Siberian Branch of RAS
Россия
Irkutsk


A. Ya. Medvedev
A.P. Vinogradov Institute of Geochemistry, Siberian Branch of RAS
Россия
Irkutsk


Yu. V. Noskova
A.P. Vinogradov Institute of Geochemistry, Siberian Branch of RAS
Россия
Irkutsk


Список литературы

1. Carlson R.W., Irving A.J., 1994. Depletion and enrichment history of subcontinental lithospheric mantle: An Os, Sr, Nd and Pb isotopic study of ultramafic xenoliths from the northwestern Wyoming craton. Earth and Planetary Science Letters 126 (4), 457–172. https://doi.org/10.1016/0012-821X(94)90124-4.

2. Crawford A.J., Fallon T.J., Green D.H., 1989. Classification, petrogenesis and tectonic setting of boninites. In: A.J. Crawford (Ed.), Boninites and related rocks. Unwin Hyman, London, p. 2–44.

3. Dobretsov N.L., Konnikov E.G., Medvedev V.N., Sklyarov E.V., 1985. Ophiolites and olistostromes of the Eastern Sayan. In: N.L. Dobretsov (Ed.), Riphean – Early Paleozoic ophiolites of Northern Eurasia, p. 34–58 (in Russian).

4. Haase K.M., Freund S., Koepke J., Hauff F., Erdmann M., 2015. Melts of sediments in the mantle wedge of the Oman ophiolite. Geology 43 (4), 275–278. https://doi.org/10.1130/G36451.1.

5. Khain E.V., Bibikova E.V., Kröner A., Zhuravlev D.Z., Sklyarov E.V., Fedotova A.A., Kravchenko-Berezhnoy I.R., 2002. The most ancient ophiolite of the Central Asian fold belt: U-Pb and Pb-Pb zircon ages for the Dunzhugur complex, Eastern Sayan, Siberia, and geodynamic implications. Earth and Planetary Science Letters 199 (3–4), 311–325. https://doi.org/10.1016/S0012-821X(02)00587-3.

6. König S., Münker C., Schuth S., Garbe-Schönberg D., 2008. Mobility of tungsten in subduction zones. Earth and Planetary Science Letters 274 (1–2), 82–92. https://doi.org/10.1016/j.epsl.2008.07.002.

7. König S., Münker C., Schuth S., Luguet A., Hoffmann J.E., Kuduon J., 2010. Boninites as windows into trace element mobility in subduction zones. Geochimica et Cosmochimica Acta 74 (2), 684–704. https://doi.org/10.1016/j.gca.2009. 10.011.

8. Kuzmichev A.B., 2004. Tectonic History of the Tuva-Mongolian Massif: Easrly Baikalian, Late Baikalian and Early Caledonian Stages. PROBEL-2000, Moscow, 192 p. (in Russian).

9. Le Bas M.J., 2000. IUGS reclassification of the high-Mg and picritic volcanic rocks. Journal of Petrology 41 (10), 1467–1470. https://doi.org/10.1093/petrology/41.10.1467.

10. McDonough W.F., Sun S.-S., 1995. The composition of the Earth. Chemical Geology 120 (3–4), 223–253. https://doi.org/ 10.1016/0009-2541(94)00140-4.

11. Parkinson I.J., Hawkesworth C., Cohen A.S., 1998. Ancient mantle in a modern arc: Osmium isotopes in Izu-BoninMariana forearc peridotites. Science 281 (5385), 2011–2013. https://doi.org/10.1126/science.281.5385.2011.

12. Pearce J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100 (1–4), 14–48. https://doi.org/10.1016/j.lithos.2007.06.016.

13. Pearce J.A., 2014. Immobile element fingerprinting of ophiolites. Elements 10 (2), 101–108. https://doi.org/10.2113/ gselements.10.2.101.

14. Pearce J.A., Robinson P., 2010. The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Research 18 (1), 60–81. https://doi.org/10.1016/j.gr.2009.12.003.

15. Pearce J.A., Thirlwall M.F., Ingram G., Murton B.J., Arculus R.J., van der Laan S.R., 1992. Isotopic evidence for the origin of boninites and related rocks drilled in the Izu-Bonin (Ogasawara) forearc, Leg 125. Proceedings of the Ocean Drilling Program, Scientific Results 125, 237–261.

16. Pe-Piper G., Tsikouras B., Hatzipanagiotou K., 2004. Evolution of boninites and island-arc tholeiites in the Pindos Ophiolite, Greece. Geological Magazine 141 (4), 455–469. https://doi.org/10.1017/S0016756804009215.

17. Reagan M.K., Ishizuka O., Stern R.J., Kelley K.A., Ohara Y., Blichert-Toft J., Bloomer S.H., Cash J., Fryer P., Hanan B.B., Hickey-Vargas R., Ishii T., Kimura J.-I., Peate D.W., Rowe M.C., Woods M., 2010. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geochemistry, Geophysics, Geosystems 11 (3), Q03X12. https://doi.org/ 10.1029/2009GC002871.

18. Reagan M.K., Pearce J.A., Petronotis K., Almeev R., Avery A.J., Carvallo C., Chapman T., Christenson G.L., Ferre E.C., Godard M., Heaton D.E., Kirchenbaur M., Kurz W., Kutterolf S., Li H., Li Y., Michibayashi K., Morgan S., Nelson W.R., Prytulak J., Python M., Robertsn A., Ryan J.G., Sager W.W., Sakuyama T., Shervais J.W., Shimizu K., Whattam S.A., 2017. Subduction initiation and ophiolite crust: new insights from IODP drilling. International Geology Review (in press). https://doi.org/10.1080/00206814.2016.1276482.

19. Shervais J.W., 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters 59 (1), 101–118. https://doi.org/10.1016/0012-821X(82)90120-0.

20. Shchipansky A.A., 2016. Boninites through time and space: petrogenesis and geodynamic settings. Geodynamics & Tectonophysics 7 (2), 143–172, https://doi.org/10.5800/GT-2016-7-2-0202.

21. Sklyarov E.V., Kovach V.P., Kotov A.B., Kuzmichev A.B., Lavrenchuk A.V., Perelyaev V.I., Shchipansky A.A., 2016. Boninites and ophiolites: problems of their relations and petrogenesis of boninites. Russian Geology and Geophysics 57 (1), 127–140. https://doi.org/10.1016/j.rgg.2016.01.009.

22. Wang K.-L., Chu Z., Gornova M., Belyaev V., Lin K.-Y., O’Reilly S.Y., 2016. Depleted SSZ type mantle peridotites in Proterozoic Eastern Sayan Ophiolites in Siberia. Goldschmidt Abstracts, 3327. Available from: https://goldschmidt.info/ 2016//uploads/abstracts/originalPDFs/979.pdf.

23. Zeng Y.-C., Chen J.-C., Xu J.-F., Wang B.-D., Huang F., 2016. Sediment melting during subduction initiation: Geochronological and geochemical evidence from the Darutso high-Mg andesites within ophiolite melange, central Tibet. Geochemistry, Geophysics, Geosystems 17 (12), 4859–4877, https://doi.org/10.1002/2016GC006456.


Для цитирования:


Belyaev V.A., Wang K., Gornova M.A., Dril’ S.I., Karimov A.A., Medvedev A.Y., Noskova Y.V. GEOCHEMISTRY AND ORIGIN OF THE EASTERN SAYAN OPHIOLITES, TUVA-MONGOLIAN MICROCONTINENT (SOUTHERN SIBERIA). Геодинамика и тектонофизика. 2017;8(3):411-415. https://doi.org/10.5800/GT-2017-8-3-0250

For citation:


Belyaev V.A., Wang K., Gornova M.A., Dril’ S.I., Karimov A.A., Medvedev A.Y., Noskova Y.V. GEOCHEMISTRY AND ORIGIN OF THE EASTERN SAYAN OPHIOLITES, TUVA-MONGOLIAN MICROCONTINENT (SOUTHERN SIBERIA). Geodynamics & Tectonophysics. 2017;8(3):411-415. https://doi.org/10.5800/GT-2017-8-3-0250

Просмотров: 241


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)