Preview

Геодинамика и тектонофизика

Расширенный поиск

МЕЗОНЕОПРОТЕРОЗОЙСКИЙ ГРЕНВИЛЛ-СВЕКОНОРВЕЖСКИЙ ВНУТРИКОНТИНЕНТАЛЬНЫЙ ОРОГЕН: ИСТОРИЯ, ТЕКТОНИКА, ГЕОДИНАМИКА

https://doi.org/10.5800/GT-2017-8-3-0309

Полный текст:

Аннотация

Цель статьи – представить главные особенности Гренвилл-Свеконорвежского орогена (ГСНО) и предложить модель тектонической и геодинамической эволюции этого орогена, опираясь на результаты исследований докембрийских тектонических структур аналогичного типа в пределах Восточно-Европейского кратона. Исследование условий и обстановок возникновения и эволюции ГСНО представляет специальный интерес в связи с тем, что он территориально и в определенном смысле «идейно» размещен в центре Родинии – предполагаемого неопротерозойского суперконтинента. ГСНО был сформирован в мезонеопротерозое во внутренней области континента Лавроскандия. В настоящее время синформная тектоническая структура ГСНО разделена на два сектора: Гренвиллский вдоль юго-восточной окраины Канадского щита и Свеконорвежский на юго-западе Скандинавии. Единство Лавроскандии в мезонеопротерозое дважды нарушалось в результате формирования океанических структур, подобных Атлантическому океану. Целостность континента через некоторое время восстанавливалась при участии процессов субдукции океанической литосферы, аккреции и обдукции островодужных и океанических террейнов. В истории формирования ГСНО выделяются два периода: первый («подготовительный») в интервале от ~1.90 до ~1.16 млрд лет и второй (собственно формирование ГСНО) – в интервале от ~1.19 до ~0.90 млрд лет. Проявления гранулитового метаморфизма неоднократно зафиксированы до Гренвиллского орогенеза: 1.67–1.66, 1.47–1.45, 1.37–1.35 и 1.20–1.18 млрд лет назад. Оттавский этап собственно Гренвиллского метаморфизма датирован 1.16 и 1.05–1.03 млрд лет. Метаморфизм в основании Аллохтонного пояса соответствует гранулитовой фации повышенных давлений и в ряде мест – высокотемпературной эклогитовой фации (800–900 °С при давлении в интервале между 14 и 20 кбар). Возраст метаморфизма в породах Параавтохтонного пояса равен 1.05–0.95 млрд лет, уровень метаморфизма возрастает от зеленосланцевой фации близ Гренвиллского фронта до амфиболитовой фации повышенных давлений близ Пограничного надвига аллохтона, демонстрируя инвертированную метаморфическую зональность. Для Свеконорвежского сектора характерен гранулитовый метаморфизм повышенных дав- лений и локально, в основании аллохтонных и в пределах параавтохтонного комплексов, отмечены высокотемпературные эклогиты. Отличительной особенностью ГСНО является широкое проявление специфического интрузивного магматизма. Массивы анортозит-мангерит-чарнокит-гранитоидного (АМЧГ) и анортозит-рапакиви-гранитного (АРГ) комплексов, сформированные 1.8–1.5 млрд лет назад, широкой дугой обрамляют ороген. Во внутренней области ГСНО массивы этих комплексов были последовательно сформированы 1.16– 1.13 и 1.09–1.05, 0.99–0.96 и 0.93–0.92 млрд лет назад; вслед за внедрением массивы неравномерно подверглись гранулитовому метаморфизму. Высокотемпературный характер магматизма и метаморфизма, многократное повторение термальных импульсов и грандиозный объем коры, подвергшейся высокотемпературным преобразованиям, указывают на мантийный плюм в качестве наиболее адекватного источника тепловой энергии. Модель внутриконтинентального развития ГСНО противоречит популярным представлениям о возникновении этого орогена в результате столкновения и объединения ранее удаленных континентов (Лаврентии, Балтики и Амазонии), которые, как предполагается, завершили сборку суперконтинента Родиния. Сделан вывод о необходимости пересмотра представлений о тектонической позиции и геодинамической эволюции ГСНО, который не является аналогом Тибет-Гималайского орогена.

Об авторе

М. В. Минц
Геологический институт РАН
Россия

докт. геол.-мин. наук, зав. лабораторией,

119017, Москва, Пыжевский пер., 7



Список литературы

1. Åhäll K.I., Connelly J., 1998. Intermittent 1.53–1.13 Ga magmatism in western Baltica; age constraints and correlations within a postulated supercontinent. Precambrian Research 92 (1), 1–20. https://doi.org/10.1016/S0301-9268(98)00064-3.

2. Åhäll K.I., Gower C.F., 1997. The Gothian and Labradorian orogens: Variations in accretionary tectonism along a late Paleoproterozoic Laurentia-Baltica margin. GFF 119 (2), 181–191. https://doi.org/10.1080/11035899709546475.

3. All T., Flodén T., Puura V., 2006. A complex model of Mesoproterozoic sedimentary and igneous suites in a graben setting north of Gotland, Baltic Sea. GFF 128 (1), 53–63. https://doi.org/10.1080/11035890601281053.

4. Allen P.A., Eriksson P.G., Alkmim F.F., Betts P.G., Catuneanu O., Mazumder R., Meng Q., Young G.M., 2015. Chapter 2. Classification of basins, with special reference to Proterozoic examples. In: R. Mazumder, P.G. Eriksson (Eds.), Precambrian basins of India: stratigraphic and tectonic context. Geological Society, London, Memoirs, vol. 43, p. 5–28. https://doi.org/10.1144/M43.2.

5. Andersson J., Bingen B., Cornell D., Johansson L., Söderlund U., Möller C., 2008. The Sveconorwegian Orogen of Southern Scandinavia: Setting, Petrology and Geochronology of Polymetamorphic High-Grade Terranes. 33 IGC, excursion No 51, August 2–5, 2008. Oslo, 33 IGC, 83 p.

6. Årebäck H., Stigh J., 2000. The nature and origin of an anorthosite associated ilmenite-rich leuconorite, Hakefjorden Complex, south-west Sweden. Lithos 51 (3), 247–267. https://doi.org/10.1016/S0024-4937(99)00070-5.

7. Ashwal L.D., 1993. Anorthosites. Minerals and Rocks Series, vol. 21. Springer, Berlin, 422 p.

8. Ashwal L.D., 2010. The temporality of anorthosites. Canadian Mineralogist 48 (4), 711–728. https://doi.org/10.3749/canmin.48.4.711.

9. Beaumont C., Nguyen M.H., Jamieson R.A., Ellis S., 2006. Crustal flow modes in large hot orogens. In: R.D. Law, M.P. Searle, L. Godin (Eds.), Channel flow, ductile extrusion and exhumation in continental collision zones. Geological Society, London, Special Publication, vol. 268, p. 91–145. https://doi.org/10.1144/GSL.SP.2006.268.01.05.

10. Bickford M.E., Hill B.M., 2007. Does the arc accretion model adequately explain the Paleoproterozoic evolution of southern Laurentia?: An expanded interpretation. Geology 35 (2), 167–170. https://doi.org/10.1130/G23174A.1.

11. Bingen B., Nordgulen Ø., Viola G., 2008. A four-phase model for the Sveconorwegian orogeny, SW Scandinavia. Norwegian Journal of Geology 88 (1), 43–72.

12. Bleeker W., Ernst R., 2006. Short-lived mantle generated magmatic events and their dyke swarms: the key unlocking Earth’s paleogeographic record back to 2.6 Ga. In: E. Hanski, S. Mertanen, T. Rämö, J. Vuollo (Eds.), Dyke swarms – time markers of crustal evolution. CRC Press, London, p. 3–26.

13. Bogdanova S.V., Bingen B., Gorbatschev R., Kheraskova T.N., Kozlov V.I., Puchkov V.N., Volozh Yu.A., 2008. The East European craton (Baltica) before and during the assembly of Rodinia. Precambrian Research 160 (1–2), 23–45. https://doi.org/10.1016/j.precamres.2007.04.024.

14. Boggs K.J.E., Corriveau L., 2004. Granulite-facies P-T-t paths and influence of retrograde cation diffusion during polyphase orogenesis, western Grenville province, Québec. In: R.P. Tollo, J. McLelland, L. Corriveau, M.J. Bartholomew (Eds.), Proterozoic tectonic evolution of the Grenville orogen in North America. Geological Society of America Memoir, vol. 197, p. 35–64. https://doi.org/10.1130/0-8137-1197-5.35.

15. Bond G.C., Nickeson P.A., Kominz M.A., 1984. Breakup of a supercontinent between 625 and 555 Ma: New evidence and implications for continental histories. Earth and Planetary Science Letters 70 (2), 325–345. https://doi.org/10.1016/0012-821X(84)90017-7.

16. Bradshaw J.Y., 1989. Early Cretaceous vein related garnet granulite in Fiordland, southwest New Zealand: a case for infiltration of mantle-derived CO2-rich fluids. The Journal of Geology 97 (6), 697–717. https://doi.org/10.1086/629353.

17. Brewer T.S., Åhäll K.I., Darbyshire D.P.F., Menuge J.F., 2002. Geochemistry of late Mesoproterozoic volcanism in southwestern Scandinavia: implications for Sveconorwegian/Grenvillian plate tectonic models. Journal of the Geological Society 159 (2), 129–144. https://doi.org/10.1144/0016-764901-044.

18. Brown M., 2007. Metamorphic conditions in orogenic belts: a record of secular change. International Geology Review 49 (3), 193–234. https://doi.org/10.2747/0020-6814.49.3.193.

19. Brown M., 2009. Metamorphic patterns in orogenic systems and the geological record. In: P.A. Cawood, A. Kröner (Eds.), Earth accretionary systems in space and time. Geological Society, London, Special Publications, vol. 318, p. 37–74. https://doi.org/10.1144/SP318.2.

20. Brueckner H.K., Van Roermund H.L.M., 2004. Dunk tectonics: A multiple subduction/eduction model for the evolution of the Scandinavian caledonides. Tectonics 23 (2), TC2004. https://doi.org/10.1029/2003TC001502.

21. Buchan K.L., Mortensen J.K., Card K.D., Percival J.A., 1998. Paleomagnetism and U–Pb geochronology of diabase dyke swarms of Minto block, Superior Province, Quebec, Canada. Canadian Journal Earth Sciences 35 (9), 1054–1069. https://doi.org/10.1139/e98-054.

22. Carlson W.D., Anderson S.D., Mosher S., Davidow J.S., Crawford W.D., Lane E.D., 2007. High-pressure metamorphism in the Texas Grenville orogen: Mesoproterozoic subduction of the southern Laurentian continental margin. International Geology Review 49 (2), 99–119. https://doi.org/10.2747/0020-6814.49.2.99.

23. Carr S.D., Easton R.M., Jamieson R.A., Culshaw N.G., 2000. Geologic transect across the Grenville orogen of Ontario and New York. Canadian Journal Earth Sciences 37 (2–3), 193–216. https://doi.org/10.1139/e99-074.

24. Christoffel C.A., Connelly J.N., Ǻhäll K.I., 1999. Timing and characterization of recurrent pre-Sveconorwegian metamorphism and deformation in the Varberg-Halmstad region of SW Sweden. Precambrian Research 98 (3–4), 173–195. https://doi.org/10.1016/S0301-9268(99)00046-7.

25. Corrigan D., Hanmer S., 1997. Anorthosites and related granitoids in the Grenville orogen: A product of convective thinning of the lithosphere? Geology 25 (1), 61–64. https://doi.org/10.1130/0091-7613(1997)025<0061:AARGIT>2.3.CO;2.

26. Corriveau L., van Breemen O., 2000. Docking of the Central Metasedimentary Belt to Laurentia in geon 12: evidence from the 1.17–1.16 Ga Chevreuil intrusive suite and host gneisses, Quebec. Canadian Journal of Earth Sciences 37 (2–3), 253–269. https://doi.org/10.1139/e00-004.

27. Cosca M.A., Mezger K., Essene E., 1998. The Baltica-Laurentia connection: Sveconorwegian (Grenvillian) metamorphism, cooling, and unroofing in the Bamble sector, Norway. The Journal of Geology 106 (5), 539–552. https://doi.org/10.1086/516040.

28. Cox R.A., Indares A., Dunning G.R., 2002. Temperature-time paths in the high-P Manicouagan Imbricate zone, eastern Grenville province: Evidence for two metamorphic events. Precambrian Research 117 (3–4), 225–250. https://doi.org/10.1016/S0301-9268(02)00059-1.

29. Culotta R.C., Pratt T., Oliver J., 1990. A tale of two sutures: COCORP’s deep seismic surveys of the Grenville province in the eastern U.S. midcontinent. Geology 18 (7), 646–649. https://doi.org/10.1130/0091-7613(1990)018<0646:ATOTSC>2.3.CO;2.

30. Daly J.S., Balagansky V.V., Timmerman M.J., Whitehouse M.J., 2006. The Lapland-Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere. In: D.G. Gee, R.A. Stephenson (Eds.), European lithosphere dynamics. Geological Society, London, Memoirs, vol. 32, p. 579–598. https://doi.org/10.1144/GSL.MEM.2006.032.01.35.

31. Dalziel I.W.D., 1991. Pacific margins of Laurentia and East Antarctica – Australia as a conjugate rift pair: evidence and implications for an Eocambrian supercontinent. Geology 19 (6), 598–601. https://doi.org/10.1130/0091-7613(1991)019<0598:PMOLAE>2.3.CO;2.

32. Dalziel I.W.D., 1997. Neoproterozoic–Paleozoic geography and tectonics: review, hypothesis, environmental speculation. Geological Society of America Bulletin 109 (1), 16–42. https://doi.org/10.1130/0016-7606(1997)109<0016:ONPGAT>2.3.CO;2.

33. Depine G.V., Andronicos C.L., Phipps-Morgan J., 2008. Near-isothermal conditions in the middle and lower crust induced by melt migration. Nature 452 (7183), 80–83. https://doi.org/10.1038/nature06689.

34. Dewey J.F., Burke K., 1973. Tibetan, Variscan and Precambrian basement reactivation: products of continental collision. The Journal of Geology 81 (6), 683–692.

35. Dickin A.P., McNutt R.H., 2007. The Central Metasedimentary Belt (Grenville province) as a failed back-arc rift zone: Nd isotope evidence. Earth and Planetary Science Letters 259 (1–2), 97–106. https://doi.org/10.1016/j.epsl.2007.04.031.

36. England P.C., Thompson A.B., 1984. Pressure-temperature-time paths of regional metamorphism. 1. Heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology 25 (4), 894–928. https://doi.org/10.1093/petrology/25.4.894.

37. Evans D.A.D., 2009. The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction. In: J.B. Murphy, J.D. Keppie, A.J. Hynes (Eds.), Ancient orogens and modern analogues. Geological Society, London, Special Publications, vol. 327, p. 371–404. https://doi.org/10.1144/SP327.16.

38. Gaál G., Gorbatschev R., 1987. An outline of the Precambrian evolution of the Baltic shield. Precambrian Research 35, 15–52. https://doi.org/10.1016/0301-9268(87)90044-1.

39. Gibson G.M., Ireland T.R., 1995. Granulite formation during continental extension in Fiordland. Nature 375 (6531), 479–482. https://doi.org/10.1038/375479a0.

40. Gibson G.M., Ireland T.R., 1999. Black Giants Anorthosite, New Zealand: a Paleozoic analogue of Arcgean stratiform anorthosite and implications for the formation of Archean high-grade terranes. Geology 27 (2), 131–134. https://doi.org/10.1130/0091-7613(1999)027<0131:BGANZA>2.3.CO;2.

41. Gower C.F., Krogh T., 2002. A U–Pb geochronological review of the Proterozoic history of the eastern Grenville province. Canadian Journal of Earth Sciences 39 (5), 795–829. https://doi.org/10.1139/e01-090.

42. Gower C.F., Ryan A.F., Rivers T., 1990. Mid-Proterozoic Laurentia–Baltica: an overview of its geological evolution and a summary of the contributions made by this volume. In: C.F. Gower, T. Rivers, B. Ryan (Eds.), Mid-Proterozoic Laurentia–Baltica. Geological Association of Canada Special Paper, vol. 38, p. 1–20.

43. Groppo C., Rolfo F., Indares A., 2012. Partial melting in the Higher Himalayan crystallines of Eastern Nepal: the effect of decompression and implications for the ‘channel flow’ model. Journal of Petrology 53 (5), 1057–1088. https://doi.org/10.1093/petrology/egs009.

44. Hamilton M.A., McLelland J., Selleck B., 2004. SHRIMP U-Pb zircon geochronology of the anorthosite-mangeritecharnokite-granite suite, Adirondack mountains, New York: Ages of emplacement and metamorphism. In: R.P. Tollo, L. Corriveau, J. McLelland, M.J. Bartholomew (Eds.), Proterozoic tectonic evolution of the Grenville orogen in North America. Geological Society of America Memoir, vol. 197, p. 337–355. https://doi.org/10.1130/0-8137-1197-5.337.

45. Hammer P.T.C., Clowes R.M., Cook F.A., Van der Velden A.J., Vasudevan K., 2010. The Lithoprobe trans-continental lithospheric cross sections: imaging the internal structure of the North American continent. Canadian Journal of Earth Sciences 47 (5), 821–857. https://doi.org/10.1139/E10-036.

46. Hanski E.J., Huhma H., Lehtonen M.I., Rastas P., 1998. 2.0 Ga old oceanic crust in northern Finland. In: E. Hanski, J. Vuollo (Eds.), International Ophiolite Symposium and Field Excursion. Generation and emplacement of ophiolites through time. Geological Survey of Finland Special Paper, vol. 26, p. 24.

47. Harley S.L., 1989. The origin of granulites: a metamorphic perspective. Geological Magazine 126 (3), 215–247. https://doi.org/10.1017/S0016756800022330.

48. Heaman L.M., 1997. Global mafic magmatism at 2.45 Ga: remnants of an ancient large igneous province. Geology 25 (4), 299–302. https://doi.org/10.1130/0091-7613(1997)025<0299:GMMAGR>2.3.CO;2.

49. Hegardt E.A., Cornell D., Claesson L., Simakov S., Stein H., Hannah J., 2005. Eclogites in the central part of the Sveconorwegian Eastern segment of the Baltic shield: support for an extensive eclogite terrane. GFF 127 (3), 221–232. https://doi.org/10.1080/11035890501273221.

50. Hiatt E.E., Palmer S.E., Kyser T.K., O’Connor T.K., 2010. Basin evolution, diagenesis and uranium mineralization in the Paleoproterozic Thelon basin, Nunavut, Canada. Basin Research 22 (3), 302–323, https://doi.org/10.1111/j.1365-2117.2009.00415.x.

51. Hoffman P.F., 1991. Did the breakout of Laurentia turn Gondwanaland inside-out? Science 252 (5011), 1409–1412. https://doi.org/10.1126/science.252.5011.1409.

52. Holm D.K., Van Schmus W.R., MacNeil L.C., Boerboom T.J., Schweitzer D., Schneider D., 2005. U-Pb zircon geochronology of Paleoproterozoic plutons from the northern midcontinent, USA: Evidence for subduction flip and continued convergence after geon 18 Penokean orogenesis. Geological Society of America Bulletin 117 (3–4), 259–275. https://doi.org/10.1130/B25395.1.

53. Högdahl K., Andersson U.B., Eklund O. (Eds.), 2004. The Transscandinavian Igneous Belt (TIB) in Sweden: A Review of Its Character and Evolution. Geological Survey of Finland Special Paper, vol. 37. Espoo, 123 p.

54. Hynes A., Rivers T., 2010. Protracted continental collision – evidence from the Grenville orogen. Canadian Journal of Earth Sciences 47 (5), 591–620. https://doi.org/10.1139/E10-003.

55. Indares A., Dunning G., 2004. Crustal architecture above the high-pressure belt of the Grenville province in the Manicouagan area: new structural, petrologic and U–Pb age constraints. Precambrian Research 130 (1–4), 199–228. https://doi.org/10.1016/j.precamres.2003.11.005.

56. Jamieson R.A., Beaumont C., Nguyen M.H., Culshaw N.G., 2007. Synconvergent ductile flow in variable-strength continental crust: Numerical models with application to the western Grenville orogen. Tectonics 26 (5), TC5005. https://doi.org/10.1029/2006TC002036.

57. Jamieson R.A., Beaumont C., Warren C.J., Nguyen M.H., 2010. The Grenville orogen explained? Applications and limitations of integrating numerical models with geological and geophysical data. Canadian Journal of Earth Sciences 47 (4), 517–539. https://doi.org/10.1139/E09-070.

58. Jefferson C.W., Thomas D.J., Gandhi S.S., Ramaekers P., Delaney G., Brisbin D., Cutts C., Quirt D., Portella P., Olson R.A., 2007, Unconformity associated uranium deposits of the Athabasca basin, Saskatchewan and Alberta. In: W.D. Goodfellow (Ed.), Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 273–305.

59. Karlstrom K.E., Åhäll K.-I., Harlan S.S., Williams M.L., McLelland J., Geissman J.W., 2001. Long lived (1.8–1.0 Ga) convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia. Precambrian Research 111 (1–4), 5–30. https://doi.org/10.1016/S0301-9268(01)00154-1.

60. Kohonen J., Rämö T., 2005. Sedimentary rocks, diabases, and late cratonic evolution. In: M. Lehtinen, P.A. Nurmi, O.T. Rämö (Eds.), Precambrian geology of Finland – Key to the evolution of the Fennoscandian shield. Developments in Precambrian Geology, vol. 14. Elsevier, Amsterdam, p. 563–603. https://doi.org/10.1016/S0166-2635(05)80014-3.

61. Koistinen T., Stephens M.B., Bogatchev V., Nordgulen I., Wennerström M., Korhonen J., 2001. Geological map of the Fennoscandian shield. Scale 1:2000000. Geological Surveys of Finland, Norway and Sweden and the North-West Department of Natural Resources of Russia.

62. Kontinen A., 1987. An Early Proterozoic ophiolite – the Jormua mafic-ultramafic complex, northeastern Finland. Precambrian Research 35, 313–341. https://doi.org/10.1016/0301-9268(87)90061-1.

63. Korhonen F.J., 2006. An Investigation into Tectonometamorphic Evolution of the Wilson Lake Terrane, Eastern Grenville province. University of Minnesota, 283 p.

64. Korsman K., Korja T., Pajunen M., Virransalo P., GGT/SVEKA Working Group, 1999. The GGT/SVEKA Transect: structure and evolution of the continental crust in the Palaeoproterozoic Svecofennian orogen in Finland. International Geology Review 41 (4), 287–333. https://doi.org/10.1080/00206819909465144.

65. Lahtinen R., Korja A., Nironen M., 2005. Paleoproterozoic tectonic evolution. In: M. Lehtinen, P.A. Nurmi, O.T. Rämö (Eds.), Precambrian geology of Finland – Key to the evolution of the Fennoscandian shield. Developments in Precambrian Geology, vol. 14. Elsevier, Amsterdam, p. 481–531. https://doi.org/10.1016/S0166-2635(05)80012-X.

66. Li Z.X., Bogdanova S.V., Collins A.S., Davidson A., De Waele B., Ernst R.E., Fitzsimons I.C.W., Fuck R.A., Gladkochub D.P., Jacobs J., Karlstrom K.E., Lu S., Natapov L.M., Pease V., Pisarevsky S.A., Thrane K., Vernikovsky V., 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research 160 (1–2), 179–210. https://doi.org/10.1016/j.precamres.2007.04.021.

67. Ludden J., Hynes A., 2000. The Lithoprobe Abitibi–Grenville transect: two billion years of crust formation and recycling in the Precambrian shield of Canada. Canadian Journal of Earth Sciences 37 (2–3), 459–476. https://doi.org/10.1139/e99-120.

68. Markl G., Frost B.R., Bucher K., 1998. The origin of anorthosites and related rocks from the Lofoten Islands, Northern Norway: I. Field relations and estimation of intrinsic variables. Journal of Petrology 39 (8), 1425–1452. https://doi.org/10.1093/petroj/39.8.1425.

69. Martignole J., Calvert A.J., Friedman R., Reynolds P., 2000. Crustal evolution along a seismic section across the Grenville province (western Quebec). Canadian Journal of Earth Sciences 37 (2–3), 291–306. https://doi.org/10.1139/e99-123.

70. McLelland J.M., Selleck B.W., 2010. Review of the Proterozoic evolution of the Grenville province, its Adirondack outlier, and the Mesoproterozoic inliers of the Appalachians. In: R.P. Tollo, M.J. Bartholomew, J.P. Hibbard, P.M. Karabinos (Eds.), From Rodinia to Pangea: The lithotectonic record of the Appalachian region. Geological Society of America Memoirs, vol. 206, p. 21–49. https://doi.org/10.1130/2010.1206(02).

71. Mertanen S., Korhonen F., 2011. Paleomagnetic constraints on an Archean–Paleoproterozoic Superior–Karelia connection: New evidence from Archean Karelia. Precambrian Research 186 (1–4), 193–204. https://doi.org/10.1016/j.precamres.2011.01.018.

72. Miller J.D., Ripley E.M., 1996. Layered intrusions of the Duluth complex, Minnesota, USA. In: R.G. Cawthorn (Ed.), Layered intrusions. Developments in Petrology, vol. 15. Elsevier, Amsterdam, p. 257–301. https://doi.org/10.1016/S0167-2894(96)80010-8.

73. Mints M.V., 2007. Paleoproterozoic supercontinent: origin and evolution of accretionary and collisional orogens exemplified in Northern cratons. Geotectonics 41 (4), 257–280. https://doi.org/10.1134/S0016852107040012.

74. Mints M.V., 2014. Tectonics and geodynamics of granulite-gneiss complexes in the East European craton. Geotectonics 48 (6), 496–522. https://doi.org/10.1134/S0016852114060089.

75. Mints M.V., Dokukina K.A., Konilov A.N., Philippova I.B., Zlobin V.L., Babayants P.S., Belousova E.A., Blokh Yu.I., Bogina M.M., Bush W.A., Dokukin P.A., Kaulina T.V., Natapov L.M., Piip V.B., Stupak V.M., Suleimanov A.K., Trusov A.A., Van K.V., Zamozhniaya N.G., 2015. East European craton: Early Precambrian history and 3D models of deep crustal structure. Geological Society of America Special Papers, vol. 510, 433 p. https://doi.org/10.1130/2015.2510.

76. Mints M.V., Kaulina T.V., Konilov A.N., Krotov A.V., Stupak V.M., 2007. The thermal and geodynamic evolution of the Lapland granulite belt: implications for the thermal structure of the lower crust during granulite-facies metamorphism. Gondwana Research 12 (3), 252–267. https://doi.org/10.1016/j.gr.2006.10.007.

77. Mints M.V., Konilov A.N., 1998. Thermal structure of the crust during granulite metamorphism: petrological speculations and geodynamic implications. In: Y. Motoyoshi, K. Shiraishi (Eds.), Origin and evolution of continents. Proceedings of International Symposium (13–14 October, 1997, Tokyo). Memoirs of National Institute of Polar Research, Special issue No. 53, p. 137–156.

78. Mints M.V., Konilov A.N., 2004. Geodynamic crustal evolution and long-lived supercontinents during the Paleoproterozoic: Evidence from granulite belts, collisional and accretionary orogens. In: P.G. Eriksson, W. Altermann, D.R. Nelson, W.U. Mueller, O. Catuneanu (Eds.), The Precambrian Earth: Tempos and events. Developments in Precambrian Geology, vol. 12. Elsevier, Amsterdam, p. 223–239.

79. Mints M.V., Suleimanov A.K., Babayants P.S., Belousova E.A., Blokh Yu.I., Bogina M.M., Bush W.A., Dokukina K.A., Zamozhniaya N.G., Zlobin V.L., Kaulina T.V., Konilov A.N., Mikhailov V.O., Natapov L.M., Piip V.B., Stupak V.M., Tikhotsky S.A., Trusov A.A., Philippova I.B., Shur D.Yu., 2010. Deep Structure, Evolution and Mineral Deposits of the Early Precambrian Basement of the East European Platform: An Interpretation of the Data from 1-EU Geotraverse, the 4B and Tatseis Profiles. GEOKART, GEOS, Moscow, v. 1, 408 p.; v. 2, 400 p. (in Russian) [Минц М.В., Сулейманов А.К., Бабаянц П.С., Белоусова Е.А., Блох Ю.И., Богина М.М., Буш В.А., Докукина К.А., Заможняя Н.Г., Злобин В.Л., Каулина Т.В., Конилов А.Н., Михайлов В.О., Натапов Л.М., Пийп В.Б., Ступак В.М., Тихоцкий С.А., Трусов А.А., Филиппова И.Б., Шур Д.Ю. Глубинное строение, эволюция и полезные ископаемые раннедокембрийского фундамента Восточно-Европейской платформы: Интерпретация материалов по опорному профилю 1-ЕВ, профилям 4В и Татсейс. М.: ГЕОКАРТ; ГЕОС, 2010. Т. 1, 408 с., Т. 2, 400 с.].

80. Moecher D.P., Anderson E.D., Cook C.A., Mezger K., 1997. The petrogenesis of metamorphosed carbonatites in the Grenville province, Ontario. Canadian Journal of Earth Sciences 34 (9), 1185–1201. https://doi.org/10.1139/e17-095.

81. Möller A., O’Brien P.J., Kennedy A., Kröner A., 2003. Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway). In: D. Vance, W. Müller, I.M. Villa (Eds.), Geochronology: linking the isotopic record with petrology and textures. Geological Society, London, Special Publications, vol. 220, p. 65–81. https://doi.org/10.1144/GSL.SP.2003.220.01.04.

82. Möller C., 1998. Decompressed eclogites in the Sveconorwegian (–Grenvillian) orogen of SW Sweden: petrology and tectonic implications. Journal of Metamorphic Geology 16 (5), 641–656. https://doi.org/10.1111/j.1525-1314.1998.00160.x.

83. Mosher S., Levine J.S.F., Carlson W.D., 2008. Mesoproterozoic plate tectonics: A collisional model for the Grenville-aged orogenic belt in the Llano uplift, central Texas. Geology 36 (1), 55–58. https://doi.org/10.1130/G24049A.1.

84. Peltonen P., Kontinen A., Huhma H., 1996. Petrology and geochemistry of metabasalts from the 1.95 Ga Jormua Ophiolite, Northeastern Finland. Journal of Petrology 37 (6), 1359–1383. https://doi.org/10.1093/petrology/37.6.1359.

85. Peltonen P., Kontinen A., Huhma H., 1998. Petrogenesis of the mantle sequence of the Jormua ophiolite (Finland): melt migration in the upper mantle during Palaeoproterozoic continental break-up. Journal of Petrology 39 (2), 297–329. https://doi.org/10.1093/petroj/39.2.297.

86. Percival J.A., 1994. Archean high-grade metamorphism. Chapter 9. In: K.C. Condie (Ed.), Archean crustal evolution. Developments in Precambrian Geology, vol. 11. Elsevier, Amsterdam, p. 357–410. https://doi.org/10.1016/S0166-2635(08)70227-5.

87. Pharaoh T.C., Brewer T.S., 1990. Spatial and temporal diversity of Early Proterozoic Volcanic Sequences – comparisons between the Baltic and Laurentian shields. Precambrian Research 47 (3–4), 169–189. https://doi.org/10.1016/0301-9268(90)90037-Q.

88. Pisarevsky S.A., Wingate M.T.D., Powell C.McA., Johnston S., Evans D.A.D., 2003. Models of Rodinia assembly and fragmentation. In: M. Yoshida, B.F. Windly, S. Dasgupta (Eds.), Proterozoic East Gondwana: supercontinent assembly and breakup. Geological Society, London, Special Publications, vol. 206, p. 35–55. https://doi.org/10.1144/GSL.SP.2003.206.01.04.

89. Rivers T., 1997. Lithotectonic elements of the Grenville province: review and tectonic implications. Precambrian Research 86 (3–4), 117–154. https://doi.org/10.1016/S0301-9268(97)00038-7.

90. Rivers T., 2009. The Grenville province as a large hot long-duration collisional orogen – insights from the spatial and thermal evolution of its orogenic fronts. In: J.B. Murphy, J.D. Keppie, A.J. Hynes (Eds.), Ancient orogens and modern analogues. Geological Society, London, Special Publications, vol. 327, 405–444. https://doi.org/10.1144/SP327.17.

91. Rivers T., 2015. Tectonic setting and evolution of the Grenville orogen: An assessment of progress over the last 40 years. Geoscience Canada 42 (1), 77–124. https://doi.org/10.12789/geocanj.2014.41.057.

92. Rivers T., Ketchum J., Indares A., Hynes A., 2002. The High Pressure belt in the Grenville Province: architecture, timing and exhumation. Canadian Journal of Earth Sciences 39 (5), 867–893. https://doi.org/10.1139/e02-025.

93. Rivers T., Martignole J., Gower C., Davidson A., 1989. New tectonic divisions of the Grenville province, southeast Canadian shield. Tectonics 8 (1), 63–84. https://doi.org/10.1029/TC008i001p00063.

94. Roberts D., 2003. The Scandinavian Caledonides: event chronology, paleogeographic settings and likely modern analogues. Tectonophysics 365 (1–4), 283–299. https://doi.org/10.1016/S0040-1951(03)00026-X.

95. Sanders I.S., 1988. Plagioclase breakdown and regeneration reactions in Grenville kyanite eclogite at Glenelg, Scotland. Contributions to Mineralogy and Petrology 98 (1), 33–39. https://doi.org/10.1007/BF00371907.

96. Sanders I.S., Van Calsteren P.W.C., Hawkesworth C.J., 1984. A Grenville Sm-Nd age for the Glenelg eclogite in northwest Scotland. Nature 312 (5993), 439–440, https://doi.org/10.1038/312439a0.

97. Sandiford M., 1989. Horizontal structures in granulite terrain: a record of mountain building or mountain collapse? Geology 17 (5), 449–452. https://doi.org/10.1130/0091-7613(1989)017<0449:HSIGTA>2.3.CO;2.

98. Schulz K.J., Cannon W.F., 2007. The Penokean orogeny in the Lake Superior region. Precambrian Research 157 (1–4), 4–25. https://doi.org/10.1016/j.precamres.2007.02.022.

99. Scoates J.S., Lindsley D.H., Frost B.R., 2010. Magmatic and structural evolution of an anorthositic magma chamber: the Poe Mountain intrusion, Laramie anorthosite complex, Wyoming. Canadian Mineralogist 48 (4), 851–885. https://doi.org/10.3749/canmin.48.4.851.

100. Scott D.J., St.-Onge M.R., Lucas S.B., Helmstaedt H., 1991. Geology and geochemistry of the Early Proterozoic Purtuniq Ophiolite, Cape Smith Belt, Northern Quebec, Canada. In: T. Peters, A. Nicolas, R.G. Coleman (Eds.), Ophiolite genesis and evolution of the oceanic lithosphere. Kluwer, Amsterdam, p. 817–849. https://doi.org/10.1007/978-94-011-3358-6_41.

101. Sharkov E.V., 2010. Middle-proterozoic anorthosite–rapakivi granite complexes: An example of within-plate magmatism in abnormally thick crust: Evidence from the East European craton. Precambrian Research 183 (4), 689–700. https://doi.org/10.1016/j.precamres.2010.08.008.

102. Söderlund U., Hellström F.A., Kamo S.L., 2008. Geochronology of high-pressure mafic granulite dykes in SW Sweden; tracking the P–T–t path of metamorphism using Hf isotopes in zircon and baddeleyite. Journal of Metamorphic Geology 26 (5), 539–560. https://doi.org/10.1111/j.1525-1314.2008.00776.x.

103. Storey C.D., Brewer T.S., Anczkiewicz R., Parrish R.R., Thirlwall M.F., 2010. Multiple high-pressure metamorphic events and crustal telescoping in the NW Highlands of Scotland. Journal of the Geological Society 167 (3), 455–468. https://doi.org/10.1144/0016-76492009-024.

104. Storey C.D., Brewer T.S., Temperley S., 2005. P–T conditions of Grenville-age eclogite facies metamorphism and amphibolite facies retrogression of the Glenelg-Attadale Inlier, NW Scotland. Geological Magazine 142 (5), 605–615. https://doi.org/10.1017/S001675680500110X.

105. Thompson A.B., Ridley J.R., 1987. Pressure-temperature-time (P-T-t) histories of orogenic belts. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 321 (1557), 27–45. https://doi.org/10.1098/rsta.1987.0003.

106. Tollo R.P., Corriveau L., McLelland J., Bartholomew M.J., 2004. Proterozoic tectonic evolution of the Grenville orogen in North America: An introduction. In: R.P. Tollo, L. Corriveau, J. McLelland, M.J. Bartholomew (Eds.), Proterozoic tectonic evolution of the Grenville orogen in North America. Geological Society of America Memoirs, vol. 197, p. 1–18. https://doi.org/10.1130/0-8137-1197-5.1.

107. Torsvik T.H., Cocks L.R.M., 2009. The Lower Palaeozoic palaeogeographical evolution of the northeastern and eastern peri-Gondwanan margin from Turkey to New Zealand. In: M.G. Bassett (Ed.), Early Palaeozoic Peri-Gondwana terranes: new insights from tectonics and biogeography. Geological Society, London, Special Publications, vol. 325, p. 3–21. https://doi.org/10.1144/SP325.2.

108. Ulmius J., Andersson J., Möller C., 2015. Hallandian 1.45 Ga high-temperature metamorphism in Baltica: P-T evolution and SIMS U-Pb zircon ages of aluminous gneisses, SW Sweden. Precambrian Research 265, 10–39. https://doi.org/10.1016/j.precamres.2015.04.004.

109. Van Schmus W.R., Green J.C., Halls H.C., 1982. Geochronology of Keweenawan rocks of the Lake Superior region: A summary. In: R.J. Wold, W.J. Hinze (Eds.), Geology and tectonics of the Lake Superior basin. Geological Society of America Memoirs, vol. 156, p. 165–172. https://doi.org/10.1130/MEM156-p165.

110. Vervoort J.D., Wirth K., Kennedy B., Sandland T., Harpp K.S., 2007. The magmatic evolution of the Midcontinent rift: new geochronologic and geochemical evidence from felsic magmatism. Precambrian Research 157 (1–4), 235–268. https://doi.org/10.1016/j.precamres.2007.02.019.

111. Volkert R.A., Johnson C.A., Tamashausky A.V., 2000. Mesoproterozoic graphite deposits, New Jersey Highlands: geologic and stable isotopic evidence for possible algal origins. Canadian Journal of Earth Sciences 37 (12), 1665–1675. https://doi.org/10.1139/e00-050.

112. Wang X.-D., Lindh A., 1996. Temperature-pressure investigation of the southern part of the Southwest Swedish granulite region. European Journal of Mineralogy 8 (1), 51–68. https://doi.org/10.1127/ejm/8/1/0051.

113. Wardle R.J., Rivers T., Gower C.F., Nunn G.A.G., Thomas A., 1986. The Northeastern Grenville province: new insights. In: J.M. Moore, A. Davidson, A.J. Baer (Eds.), The Grenville Province. Geological Association of Canada Special Paper, vol. 31, p. 13–29.

114. Whitmeyer S.J., Karlstrom K.E., 2007. Tectonic model for the Proterozoic growth of North America. Geosphere 3 (4), 220–259. https://doi.org/10.1130/GES00055.1.

115. Wilson J.T., 1966. Did the Atlantic close and then re-open? Nature 211 (5050), 676–681. https://doi.org/10.1038/211676a0.

116. Wodicka N., Ketchum J.W.F., Jamieson R.A., 2000. Grenvillian metamorphism of monocyclic rocks, Georgian bay, Ontario, Canada: implications for convergence history. The Canadian Mineralogist 38 (2), 471–510. https://doi.org/10.2113/gscanmin.38.2.471.


Для цитирования:


Минц М.В. МЕЗОНЕОПРОТЕРОЗОЙСКИЙ ГРЕНВИЛЛ-СВЕКОНОРВЕЖСКИЙ ВНУТРИКОНТИНЕНТАЛЬНЫЙ ОРОГЕН: ИСТОРИЯ, ТЕКТОНИКА, ГЕОДИНАМИКА. Геодинамика и тектонофизика. 2017;8(3):619-642. https://doi.org/10.5800/GT-2017-8-3-0309

For citation:


Mints M.V. MESO-NEOPROTEROZOIC GRENVILLE-SVECONORWEGIAN INTRACONTINENTAL OROGEN: HISTORY, TECTONICS, GEODYNAMICS. Geodynamics & Tectonophysics. 2017;8(3):619-642. (In Russ.) https://doi.org/10.5800/GT-2017-8-3-0309

Просмотров: 381


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)