Preview

Геодинамика и тектонофизика

Расширенный поиск

КОМПЛЕКСНАЯ 3-МЕРНАЯ ГЕОЛОГО-ГЕОФИЗИЧЕСКАЯ МОДЕЛЬ КОРЫ НА ЮГО-ВОСТОКЕ ФЕННОСКАНДИНАВСКОГО ЩИТА: ПРИРОДА ПЛОТНОСТНОЙ РАССЛОЕННОСТИ КОРЫ И КОРОМАНТИЙНОЙ ГРАНИЦЫ

https://doi.org/10.5800/GT-2015-6-2-0176

Полный текст:

Аннотация

Трехмерная комплексная геофизическая модель земной коры и верхней части мантии архейского Карельского кратона и позднепалеопротерозойского Свекофеннского аккреционного орогена на юго-востоке Фенноскандинавского щита получена с использованием методов комплексной инверсии геофизических данных, основанных на стохастическом описании взаимосвязей физических свойств среды: плотности, скорости продольных волн и теплогенерации пород. Для построения модели использованы результаты глубинных сейсмических исследований, данные о гравитационном поле и поверхностном тепловом потоке изучаемого региона. Численные схемы решения трехмерных задач реализованы в сферической постановке с учетом реального рельефа Земли. Методика достаточно универсальна и перспективна при исследовании строения коры и литосферы крупных регионов. Геофизическая модель сопоставлена с региональными поверхностными геологическими данными и результатами сейсмических исследований МОГТ по профилям 4В, FIRE-1 и FIRE-3-3A. По результатам комплексного геофизического моделирования и геологической интерпретации особенностей полученной объемной модели показано: (1) субгоризонтальная плотностная расслоенность континентальной коры накладывается на ранее сформированную геологическую структуру, плотностная дифференциация пород с глубиной уменьшается; особенности плотностной расслоенности в преобладающей степени определяются современным и относительно недавним состоянием коры, но могут быть нарушены в результате наиболее поздних деформаций; (2) температурные вариации на разделе Мохо частично определяются «локальными» изменениями теплогенерации мантии, которые обусловлены особенностями ее формирования и преобразования; (3) представления о нижней коре континентов как о «зоне рефлективити» и как о слое значительно повышенной плотности и скорости не являются эквивалентными: нижняя кора – это наиболее глубинный и наиболее высокоплотный элемент субгоризонтальной плотностной расслоенности, в свою очередь, сейсмический образ «зоны рефлективити» преимущественно связан с процессами преобразования коры в результате магматического андерплейтинга и интерплейтинга в обстановках рифтогенного растяжения и мантийно-плюмовой активности; (4) при определенных сочетаниях мощности коры и температурного режима на уровне раздела Мохо породы коры платформенных областей могут быть преобразованы в эклогиты – в этом случае граница коры и мантии определяется количественными соотношениями пород, подвергшихся и не подвергшихся эклогитизации, и соответствующими значениями плотностных и скоростных характеристик; (5) высокий уровень уплотнения пород в коре под воздейстием литостатической нагрузки невозможно объяснить на уровне «простых» представлений о метаморфизме и/или об уплотнении и компакции пород, базирующихся на лабораторных исследованиях образцов и расчетных моделях, что свидетельствует о существовании дополнительных и весьма мощных механизмов, которые обеспечивают обратимые изменения горных пород.

 

Об авторах

В. Н. Глазнев
Воронежский государственный университет, Воронеж, Россия
Россия

докт. физ.-мат. наук, заведующий кафедрой геофизики
Воронежский государственный университет
394006, Воронеж, Университетская площадь, 1, Россия



М. В. Минц
Геологический институт РАН, Москва, Россия
Россия

докт. геол.-мин. наук, зав. лабораторией
Геологический институт РАН
119016, Москва, Пыжевский пер., 7, Россия



О. А. Муравина
Воронежский государственный университет, Воронеж, Россия
Россия

канд. геол.-мин. наук, доцент
Воронежский государственный университет
394006, Воронеж, Университетская площадь, 1, Россия



А. Б. Раевский
Геологический институт КНЦ РАН, Апатиты, Россия
Россия

канд. физ.-мат. наук, в.н.с.
Геологический институт КНЦ РАН
184200, Апатиты, ул. Ферсмана, 14, Россия



Л. Г. Осипенко
Геологический институт КНЦ РАН, Апатиты, Россия
Россия

н.с. Геологический институт КНЦ РАН
184200, Апатиты, ул. Ферсмана, 14, Россия



Список литературы

1. Abbott D.H., Mooney W.D., Van Tongeren J.A., 2013. The character of the Moho and lower crust within Archean cratons and the tectonic implications. Tectonophysics 609, 690–705. http://dx.doi.org/10.1016/j.tecto.2013.09.014.

2. Abramovitz T., Thybo H., Berthelsen A., 1997. Proterozoic sutures and terranes in the southeastern Baltic Shield interpreted from BABEL deep seismic data. Tectonophysics 270 (3–4), 259–277. http://dx.doi.org/10.1016/S0040-1951(96)00213-2.

3. Aleksidze M.A., 1987. Approximate Methods of Solution of Direct and Inverse Gravimetric Problems. Nauka, Moscow, 336 p. (in Russian) [Алексидзе М.А. Приближенные методы решения прямых и обратных задач гравиметрии. М.: Наука, 1987. 336 с.].

4. Artemieva I.M., Thybo H., Kaban M.K., 2006. Deep Europe today: geophysical synthesis of the upper mantle structure and lithospheric processes over 3.5 Ga. In: D.G. Gee, R.A. Stephenson (Eds.), European lithosphere dynamics. Geological Society London Memoirs, vol. 32, p. 11–41. http://dx.doi.org/10.1144/GSL.MEM.2006.032.01.02

5. BABEL Working Group, 1990. Evidence for early Proterozoic plate tectonics from seismic reflection profiles in the Baltic shield. Nature 348 (6296), 34–38. http://dx.doi.org/10.1038/348034a0.

6. BABEL Working Group, 1993. Deep seismic reflection/refraction interpretation of crustal structure along BABEL profiles A and B in the Southern Baltic Sea. Geophysical Journal International 112 (3), 325–343. http://dx.doi.org/ 10.1111/j.1365-246X.1993.tb01173.x.

7. Baird D.J., Knapp J.H., Steer D.N., Brown L.D., Nelson K.D., 1995. Upper mantle reflectivity beneath the Williston basin, phase-change Moho and the origin of intracratonic basins. Geology 23 (5), 431–434. http://dx.doi.org/10.1130/ 0091-7613(1995)023<0431:UMRBTW>2.3.CO;2.

8. Baird D.J., Nelson K.D., Knapp J.H., Walters J.J., Brown L.D., 1996. Crustal structure and evolution of the Trans-Hudson orogen: Results from seismic reflection profiling. Tectonics 15 (2), 416–426. http://dx.doi.org/10.1029/95TC02 425.

9. Balling N., 1995. Heat flow and thermal structure of the lithosphere across the Baltic Shield and northern Tornquist Zone. Tectonophysics 244 (1–3), 13–50. http://dx.doi.org/10.1016/0040-1951(94)00215-U.

10. Barton P.J., 1986. The relationship between seismic velocity and density in the continental crust – a useful constraint? Geophysical Journal of the Royal Astronomical Society 87 (1), 195–208. http://dx.doi.org/10.1111/j.1365-246X. 1986.tb04553.x.

11. Berzin R.G., Yurov Y.G., Pavlenkova N.I., 2002. CDP and DSS data along the Uchta–Kem profile (the Baltic Shield). Tectonophysics 355 (1–4), 187–200. http://dx.doi.org/10.1016/S0040-1951(02)00141-5.

12. Bibikova E., Skiöld T., Bogdanova S., Gorbatschev R., Slabunov A., 2001. Titanite-rutile thermochronometry across the boundary between the Archaean Craton in Karelia and the Belomorian Mobile Belt, eastern Baltic Shield. Precambrian Research 105 (2–4), 315–330. http://dx.doi.org/10.1016/S0301-9268(00)00117-0.

13. Birch F., 1961. The velocity of compressional waves in rocks to 10 kilobars: 2. Journal of Geophysical Research 66 (7), 2199–2224. http://dx.doi.org/10.1029/JZ066i007p02199.

14. Braile L.W., Chiang C.S., 1986. The Continental MohorovičIć Discontinuity: Results from Near-Vertical and Wide-Angle Seismic Reflection Studies. In: M. Barazangi, L. Brown (Eds.), Reflection seismology: a global perspective. AGU Geodynamics Series, vol. 13, p. 257–272.

15. Brown M., 2009. Metamorphic patterns in orogenic systems and the geological record. In: P.A. Cawood, A. Kröner (Eds.), Earth accretionary systems in space and time. Geological Society London Special Publications, vol. 318, p. 37–74. http://dx.doi.org/doi:10.1144/SP318.2.

16. Buyanov A.F., Glaznev V.N., Mitrofanov F.P., Raevsky A.B., 1995. Three-dimensional modelling of the Lapland Granulite Belt and adjacent structures of the Baltic Shield from geophysical data. In: D. Roberts, N. Nordgulen (Eds.), Geology of the eastern Finnmark – western Kola peninsula region. Geological Survey of Norway, Special Publication, vol. 7, p. 167–178.

17. Buyanov A.F., Glaznev V.N., Raevsky A.B., Skopenko G.B., 1989. Integrated interpretation of gravity, seismic and geothermal data. Geofizicheskiy Zhurnal (Geophysical Journal) 11 (2), 30–39 (in Russian) [Буянов А.Ф., Глазнев В.Н., Раевский А.Б., Скопенко Г.Б. Комплексная интерпретация данных гравиметрии, сейсмометрии и геотермии // Геофизический журнал. 1989. Т. 11. № 2. С. 30–39].

18. Carbonell R., Levander A., Kind R., 2013. The Mohorovičić discontinuity beneath the continental crust: An overview of seismic constraints. Tectonophysics 609, 353–376. http://dx.doi.org/10.1016/j.tecto.2013.08.037.

19. Christensen N.I., Mooney W.D., 1995. Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research 100 (B6), 9761–9788. http://dx.doi.org/10.1029/95JB00259.

20. Conrad V., 1925. Laufzeitkurven des Tauernbebens vom 28. November, 1923. Mitteilungen der Erdbeben-Kommission der Akademie der Wissenschaften in Wien, Neue Folge, 59 p.

21. Cook F.A., White D.J., Jones A.G., Eaton D.W.S., Hall J., Clowes R.M., 2010. How the crust meets the mantle: Lithoprobe perspectives on the Mohorovicic discontinuity and crust–mantle transition. Canadian Journal of Earth Sciences 47 (4), 315–351. http://dx.doi.org/10.1139/E09-076.

22. Dolgal A.S., 2002. Computer Technology of Gravity and Magnetic Surveys Data Processing and Interpretation in Mountainous Areas. Mart Publishing House, Abakan, 187 p. (in Russian) [Долгаль А.С. Компьютерные технологии обработки и интерпретации данных гравиметрической и магнитной съемок в горной местности. Абакан: ООО “Фирма Март”, 2002. 188 с.].

23. Downes H., Peltonen P., Mänttäri I., Sharkov E.V., 2002. Proterozoic zircon ages from crustal granulite xenoliths, Kola Peninsula, Russia: evidence for crustal growth and reworking. Journal of the Geological Society, London 159 (5), 485–488. http://dx.doi.org/doi:10.1144/0016-764901-162.

24. Galitchanina L.D., Glaznev V.N., Mitrofanov F.P., Olesen O., Henkel H., 1995. Surface density characteristics of the Baltic Shield and adjacent territories. In: D. Roberts, N. Nordgulen (Eds.), Geology of the Eastern Finnmark–Western Kola Peninsula Region. Geological Survey of Norway, Special Publication, vol. 7, p. 349–354.

25. Glaznev V.N., 1987. About one approach to construction of a consistent model of the Earth's crust. In: V.I. Starostenko (Ed.), Studies of the lithosphere by geophysical methods. Naukova Dumka, Kiev, p. 228–235 (in Russian) [Глазнев

26. В.Н. Об одном подходе к построению согласованной модели земной коры // Изучение литосферы геофизическими методами / Ред. В.И. Старостенко. Киев: Наукова думка, 1987. С. 228–235].

27. Glaznev V.N., 1999. Evaluation of the limits of applicability of stochastic models of potential fields. Vestnik VSU, Seriya Geologiya (Bulletin of Voronezh State University, Geology Series) (8), 153–156 (in Russian) [Глазнев В.Н. Оценка границ применимости стохастических моделей потенциальных полей // Вестник Воронежского государственного университета, серия Геология. 1999. № 8. С. 153–156].

28. Glaznev V.N., 2003. Complex Geophysical Models of the Fennoscandian Lithosphere. K&M Publishing House, Apatity, 252 p. (in Russian) [Глазнев В.Н. Комплексные геофизические модели литосферы Фенноскандии. Апатиты: КаэМ, 2003. 252 c.].

29. Glaznev V.N., Kukkonen I.T., Raevsky A.B., Ekkinen J., 2004. New data on thermal flow in the central part of the Kola Peninsula. Doklady Earth Sciences 396 (4), 512–514.

30. Glaznev V.N., Raevsky A.B., 1991. About the decision of direct tasks of gravimetry on the spherical Earth for gradient-layered models. In: N.V. Sharov, V.A. Glebovitskiy (Eds.), Problems of integrated interpretation of geological and geophysical data. Nauka, Leningrad, p. 183–188 (in Russian) [Глазнев В.Н., Раевский А.Б. О решении прямой задачи гравиметрии на сфере для градиентно-слоистых моделей среды // Проблемы комплексной интерпретации геолого-геофизических данных / Ред. Н.В. Шаров, В.А. Глебовицкий. Л.: Наука, 1991. С. 183–188].

31. Glaznev V.N., Raevsky A.B., Sharov N.V., 1989. A model of the deep structure of the north-eastern part of the Baltic Shield based on joint interpretation of seismic, gravity, magnetic and heat flow data. Tectonophysics 162 (1–2), 151–164. http://dx.doi.org/10.1016/0040-1951(89)90361-2.

32. Glaznev V.N., Raevsky A.B., Skopenko G.B., 1996. A three-dimensional integrated density and thermal model of the Fennoscandian lithosphere. Tectonophysics 258 (1–4), 15–33. http://dx.doi.org/10.1016/0040-1951(95)00147-6.

33. Glaznev V.N., Skopenko G.B., 1991. Thermal model of lithosphere along the European geotransect 3. In: U.I. Moiseenko, V.V. Gordienko (Eds.), Geothermal models of geological structures. VSEGEI, St. Petersburg, p. 25-31 (in Russian) [Глазнев В.Н., Скопенко Г.Б. Термическая модель литосферы вдоль европейского геотрансекта 3 // Геотермические модели геологических структур / Ред. У.И. Моисеенко, В.В. Гордиенко. СПб.: ВСЕГЕИ, 1991. С. 25–31].

34. Glaznev V., Skopenko G., Smolyaninova E., Lyakhovsky V., 1991. Complex geophysical model of the crust for the Baltic profile. Institute of Seismology University of Helsinki, Report S-25, 107–113.

35. Glaznev V.N., Zhirova A.M., Raevsky A.B., 2008. New data on the deep structure of the Khibiny and Lovozero massifs, Kola Peninsula. Doklady Earth Sciences 422 (1), 1150–1152. http://dx.doi.org/10.1134/S1028334X08070349.

36. Golizdra G.J., 1988. Complex Interpretation of Geophysical Fields in Studying of Deep Structure of the Earth's Crust. Nedra, Moscow, 212 p. (in Russian) [Голиздра Г.Я. Комплексная интерпретация геофизических полей при изучении глубинного строения земной коры. М.: Недра, 1988. 212 с.].

37. Grad M., Tiira T., ESC Working Group., 2009. The Moho depth map of the European Plate. Geophysical Journal International 176 (1), 279–292. http://dx.doi.org/10.1111/j.1365-246X.2008.03919.x.

38. Hammer P.T.C., Clowes R.M., Cook F.A., Van der Velden A.J., Vasudevan K., 2010. The lithoprobe trans-continental lithospheric cross sections: imaging the internal structure of the North American continent. Canadian Journal Earth Sciences 47 (5), 821–857. http://dx.doi.org/10.1139/E10-036.

39. Holbrook W.S., Purdy G.M., Collins J.A., Sheridan R.E., Musser D.L., Glover L., Talwani M., Ewing J.I., Hawman R., Smithson S.B., 1992. Deep velocity structure of rifted continental crust, U.S. Mid-Atlantic Margin, from wide-angle reflection / refraction data. Geophysical Research Letters 19 (16), 1699–1702. http://dx.doi.org/10.1029/92GL01799.

40. Holliger K., Levander A., 1994. Lower crustal reflectivity modeled by rheological controls on mafic intrusions. Geology 22 (4), 367–370. http://dx.doi.org/10.1130/0091-7613(1994)022<0367:LCRMBR>2.3.CO;2.

41. Hölttä P., Huhma H., Mänttäri, I., Paavola J., 2000a. P-T-t development of Archaean granulites in Varpaisjärvi area, Central Finland. II. Dating of high-grade metamorphism with the U-Pb and Sm-Nd methods. Lithos 50 (1–3), 121–136. http://dx.doi.org/10.1016/S0024-4937(99)00055-9.

42. Hölttä P., Huhma H., Mänttäri I., Peltonen P., Juhanoja J., 2000b. Petrology and geochemistry of mafic granulite xenoliths from the Lahtojoki kimberlite pipe, eastern Finland. Lithos 51 (1–2), 109–133. http://dx.doi.org/10.1016/ S0024-4937(99)00077-8.

43. Hölttä P., Paavola J., 2000. P-T-t development of Archaean granulites in Varpaisjärvi area, Central Finland. I. Effects of multiple metamorphism on the reaction history of mafic rocks. Lithos 50 (1–3), 97–120. http://dx.doi.org/ 10.1016/S0024-4937(99)00056-0.

44. Ivakhnenko A.G., Yurachkovsky J.P., 1987. Modeling of Complex Systems by Experimental Data. Radio i Svyaz Publishing House, Moscow, 120 p. (in Russian) [Ивахненко А.Г., Юрачковский Ю.П. Моделирование сложных систем по экспериментальным данным. М.: Радио и связь, 1987. 120 с.].

45. Kartvelishvili K.M., 1983. Planetary Density Model and the Normal Gravitational Field of the Earth. Nauka, Moscow, 93 p. (in Russian) [Картвелишвили К.М. Планетарная плотностная модель и нормальное гравитационное поле Земли. М.: Наука, 1983. 93 с.].

46. Kempton P.D., Downes H., Neymark L.A., Warto J.A., Zartman R.E., Sharkov E.V., 2001. Garnet granulite xenoliths from the northern Baltic Shield – the underplated lower crust of a Paleoproterozoic large igneous province? Journal of Petrology 42 (4), 731–763. http://dx.doi.org/10.1093/petrology/42.4.731.

47. Kobrunov A.I., 1982. About best value solutions to the inverse problem of gravity. Izvestiya AN SSSR, Seriya Fizika Zemli (2), 100–107 (in Russian) [Кобрунов А.И. О классах оптимальности решений обратной задачи гравиразведки // Известия АН СССР, серия Физика Земли. 1982. № 2. С. 100–107].

48. Kobrunov A.I., 2008. Mathematical Foundations of the Theory of Interpretation of Geophysical Data. ChentrLitNeftGaz Publishing House, Moscow, 288 p. (in Russian) [Кобрунов А.И. Математические основы теории интерпретации геофизических данных. М.: ЦентрЛитНефтеГаз, 2008. 286 с.].

49. Kontinen A., Paavola J., 2006. A preliminary model of the crustal structure of the eastern Finland Archaean complex between Vartius and Vieremä, based on constraints from surface geology and FIRE 1 seismic survey. In: I.T. Kukkonen, R. Lahtinen (Eds.), Finnish Reflection Experiment FIRE 2001–2005. Geological Survey of Finland Special Paper, vol. 43, p. 223–240.

50. Korja A., Lahtinen R., Heikkinen P., Kukkonen I.N., and FIRE Working Group, 2006. A geological interpretation of the upper crust along FIRE-1. In: I.T. Kukkonen, R. Lahtinen (Eds.), Finnish Reflection Experiment FIRE 2001–2005. Geological Survey of Finland Special Paper, vol. 43, p. 45–76.

51. Korsman K., Korja T., Pajunen M., Virransalo P., GGT/SVEKA Working Group, 1999. The GGT/SVEKA transect: structure and evolution of the continental crust in the Palaeoproterozoic Svecofennian orogen in Finland. International Geology Review 41 (4), 287–333. http://dx.doi.org/10.1080/00206819909465144.

52. Kozlovskaya E., Elo S., Hjelt S.-E., Yliniemi J., Pirttijärvi M., SVEKALAPKO Seismic Tomography Working Group, 2004. 3-D density model of the crust of southern and central Finland obtained from joint interpretation of the SVEKALAPKO crustal P-wave velocity models and gravity data. Geophysical Journal International 158 (3), 827–848. http://dx.doi.org/10.1111/j.1365-246X.2004.02363.x.

53. Kukkonen I.T., Gosnold W.D., Šafanda J., 1998. Anomalously low heat flow density in eastern Karelia, Baltic Shield: a possible palaeoclimatic signature. Tectonophysics 291 (1–4), 235–249. http://dx.doi.org/10.1016/S0040-1951 (98)00043-2.

54. Kukkonen I.T., Kuusisto M., Lehtonen M., Peltonen P., 2008. Layering of eclogitized lower crust: Control on the crust–mantle boundary in the central Fennoscandian shield. Tectonophysics 457 (3–4), 111–127. http://dx.doi.org/10. 1016/j.tecto.2008.04.029.

55. Kukkonen I.T., Lahtinen R. (Eds.), 2006. Finnish Reflection Experiment FIRE 2001–2005. Geological Survey of Finland Special Paper, vol. 43, Helsinki, 247 p.

56. Kuusisto M., Kukkonen I.T., Heikkinen P., Pesonen L.J., 2006. Lithological interpretation of crustal composition in the Fennoscandian Shield with seismic velocity data. Tectonophysics 420 (1–2), 283–299. http://dx.doi.org/10.1016/ j.tecto.2006.01.014.

57. Lahtinen R., Korja A., Nironen M., Heikkinen P., 2009. Palaeoproterozoic accretionary processes in Fennoscandia. In: P.A. Cawood, A. Kröner (Eds.), Earth accretionary systems in space and time. The Geological Society, London, Special Publications, vol. 318, p. 237–256. http://dx.doi.org/10.1144/SP318.8.

58. Ludwig J.W., Nafe J.E., Drake C.L., 1970. Seismic refraction. In: A.E. Waxwell (Ed.), The Sea, vol. 4. Willey, New York, p. 53–84.

59. Lyakhovsky V., Ben-Zion Y., 2009. Evolving geometrical and material properties of fault zones in a damage rheology model. Geochemistry Geophysics Geosystems 10 (11), Q11011. http://dx.doi.org/10.1029/2009GC002543.

60. Mareschal J.-C., Gangi A.F., Lamping N.L., 1982. The Moho as a phase change: a test of the hypothesis. Journal of Geophysical Research 87 (6), 4723–4730. http://dx.doi.org/10.1029/JB087iB06p04723.

61. Martushko P.S., Prutkin I.L., 2003. Technology of division of the gravitational field sources in depth. Geofizicheskiy Zhurnal (Geophysical Journal) 25 (3), 30–34 (in Russian) [Мартышко П.С., Пруткин И.Л. Технология разделения источников гравитационного поля по глубине // . 2003. Т. 25. № 3. С. 30–34.].

62. McBride J.H., White R.S., Smallwood J.R., England R.W., 2004. Must magmatic intrusion in the lower crust produce reflectivity? Tectonophysics 388 (1–4), 271–297. http://dx.doi.org/10.1016/j.tecto.2004.07.055.

63. Meissner R., Rabbel W., Kern H., 2006. Seismic lamination and anisotropy of the Lower Continental Crust. Tectonophysics 416 (1–4), 81–99. http://dx.doi.org/10.1016/j.tecto.2005.11.013.

64. Mereu, R.F., Baerg, J., Wu, J., 1989. The complexity of the continental lower crust and Moho from PmP data: results from COCRUST experiments. In: R.F. Mereu, S. Mueller, D.M. Fountain (Eds.), Properties and Processes of Earth's Lower Crust. AGU Geophysical Monograph, vol, 51, p. 103–119.

65. Miksat J., Wen K.-L., Wenzel F., Sokolov V., Chen C.-T., 2010. Numerical modelling of ground motion in the Taipei Basin: basin and source effects. Geophysical Journal International 183 (3), 1633–1647. http://dx.doi.org/10.1111/j.1365-246X.2010.04818.x.

66. Mints M.V., 2007. Paleoproterozoic supercontinent: Origin and evolution of accretionary and collisional orogens exem-plified in northern cratons. Geotectonics 41 (4), 257–280. http://dx.doi.org/10.1134/S0016852107040012.

67. Mints M.V., 2011. 3D model of deep structure of the Early Precambrian crust in the East European Craton and paleogeodynamic implications. Geotectonics 45 (4), 267–290. http://dx.doi.org/10.1134/S0016852111040054.

68. Mints M.V., Dokukina K.A., Konilov A.N., Philippova I.B., Zlobin V.L., Babayants P.S., Belousova E.A., Blokh Yu.I., Bogina M.M., Bush W.A., Dokukin P.A., Kaulina T.V., Natapov L.M., Piip V.B., Stupak V.M., Suleimanov A.K., Trusov A.A., Van K.V., Zamozhniaya N.G., 2015. East European Craton: Early Precambrian history and 3D models of deep crustal structure. Geological Society of America Special Paper, vol. 510, 433 p. http://dx.doi.org/10.1130/2015.2510.

69. Mints M.V., Glaznev V.N., Konilov A.N., Kunina N.M., Nikitichev A.P., Raevskiy A.B., Sedykh J.N., Stupak V.M., Fonarev V.I., 1996. Early Precambrian of the North-East of the Baltic Shield: Paleogeodynamics, Structure and Evolution of the Continental Crust. Naucnhyi Mir, Moscow, 287 p. (in Russian) [Минц М.В., Глазнев В.Н., Конилов А.Н., Кунина Н.М., Никитичев А.П., Раевский А.Б., Седых Ю.Н., Ступак В.М., Фонарев В.И. Ранний докембрий северо-востока Балтийского щита: палеогеодинамика, строение и эволюция континентальной коры. М.: Научный мир, 1996. 287 c.].

70. Mints M.V., Kaulina T.V., Konilov A.N., Krotov A.V., Stupak V.M., 2007. The thermal and geodynamic evolution of the Lapland granulite belt: implications for the thermal structure of the lower crust during granulite-facies metamorphism. Gondwana Research 12 (3), 252–267. http://dx.doi.org/10.1016/j.gr.2006.10.007.

71. Mints M.V., Konilov A.N., 2004. Geodynamic crustal evolution and long-lived supercontinents during the Palaeoproterozoic: Evidence from granulite-gneisses belts, collisional and accretionary orogens. In: P.G. Eriksson, W. Altermann, D.R. Nelson, W.U. Mueller, O. Catuneanu (Eds.), The Precambrian Earth: Tempos and Events. Elsevier, p. 223–239.

72. Mints M., Suleimanov A., Zamozhniaya N., Stupak V., 2009. A 3-D model of the Early Precambrian crust under the south-eastern Fennoscandian Shield: Karelia Craton and Belomorian tectonic province. Tectonophysics 472 (1–4), 323–339. http://dx.doi.org/10.1016/j.tecto.2008.12.008.

73. Mitrofanov F.P., Sharov N.V., Zagorodny V.G., Glaznev V.N., Korja A., 1998. Crustal structure of the Baltic shield along the Pechenga – Kostomuksha – Lovisa geotraverse. International Geology Review 40 (11), 990–997. http://dx.doi.org/ 10.1080/00206819809465250.

74. Mjelde M., Goncharov A., Müller R.D., 2013. The Moho: Boundary above upper mantle peridotites or lower crustal eclo-gites? A global review and new interpretations for passive margins. Tectonophysics 609, 636–650. http:// dx.doi.org/10.1016/j.tecto.2012.03.001.

75. Mooney W.D., Meissner R., 1992. Multi-genetic origin of crustal reflectivity: a review of seismic reflection profiling of the continental lower crust and Moho. In: D.M. Fountain, R. Arculus, R.W. Kay (Eds.), Continental Lower Crust. Elsevier, Amsterdam, p. 45–79.

76. Muravina O.M., 2012. The method of the group account of arguments in the analysis of geophysical data. Geofizika (Geophysics) (6), 16–20 (in Russian) [Муравина О.М. Метод группового учета аргументов при анализе геофизических данных // Геофизика. 2012. № 6. С. 16–20].

77. Nyblade A.A., Pollack H.N., 1993. A global analysis of heat flow from Precambrian terrains: implications for the thermal structure of Archean and Proterozoic lithosphere. Journal of Geophysical Research 98 (B7), 12207–12218. http:// dx.doi.org/10.1029/93JB00521.

78. O'Reilly S.Y., Griffin W.L., 2013. Moho vs crust–mantle boundary: Evolution of an idea. Tectonophysics 609, 535–546. http://dx.doi.org/10.1016/j.tecto.2012.12.031.

79. Pasquale V., Verdoya M., Chiozzi P., 1991. Lithospheric thermal structure in the Baltic Shield. Geophysical Journal International 106 (3), 611–620. http://dx.doi.org/10.1111/j.1365-246X.1991.tb06333.x.

80. Peacock S.M., Rushmer T., Thompson A.B., 1994. Partial melting of subducting oceanic crust. Earth and Planetary Science Letters 121 (1–2), 227–244. http://dx.doi.org/10.1016/0012-821X(94)90042-6.

81. Pedersen L.B., 1991. Relations between potential fields and some equivalent sources. Geophysics 56 (7), 961–971. http://dx.doi.org/10.1190/1.1443129.

82. Peltonen P., Kontinen A., Huhma H., 1998. Petrogenesis of the mantle sequence of the Jormua Ophiolite (Finland): Melt migration in the upper mantle during Palaeoproterozoic continental break-up. Journal of Petrology 39 (2), 297–329. http://dx.doi.org/10.1093/petroj/39.2.297.

83. Peltonen P., Mänttäri I., Huhma H., Whitehouse M.J., 2006. Multi-stage origin of the lower crust of the Karelian craton from 3.5 to 1.7 Ga based on isotopic ages of kimberlite-derived mafic granulite xenoliths. Precambrian Research 147 (1–2), 107–123. http://dx.doi.org/10.1016/j.precamres.2006.02.008.

84. Prodehl C., Kennett B., Artemieva I., Thybo H., 2013. 100 years of seismic research on the Moho. Tectonophysics 609, 9–44. http://dx.doi.org/10.1016/j.tecto.2013.05.036.

85. Rebetsky Yu.L., 2007. Tectonic Stresses and Strength of Natural Massive. Akademkniga Publishing House, Moscow, 406 p. (in Russian) [Ребецкий Ю.Л. Тектонические напряжения и прочность природных горных массивов. М.: ИКЦ «Академкнига», 2007. 406 с.].

86. Romanyuk T.V., 1995. Seismo-density modelling of the crust and upper mantle along geotransect Quartz. Fizika Zemli (9), 11–23 (in Russian) [Романюк Т.В. Сейсмоплотностное моделирование коры и верхней части мантии вдоль геотраверса "Кварц" // Физика Земли. 1995. № 9. С. 11–23].

87. Romanyuk T.V., Mooney W.D., Blakely R.J., 2001. Density model of the Cascadia subduction zone. Izvestiya, Physics of the Solid Earth 37 (8), 617–635.

88. Seipold U., 1998. Temperature dependence of thermal transport properties of crystalline rocks – a general law. Tectonophysics 291 (1–4), 161–172. http://dx.doi.org/10.1016/S0040-1951(98)00037-7.

89. Silvennoinen H., Kozlovskaya E., Kissling E., Kosarev G., POLENET/LAPNET Working Group, 2014. A new Moho boundary map for the northern Fennoscandian Shield based on combined controlled-source seismic and receiver function data. GeoResJ 1–2, 19–32. http://dx.doi.org/10.1016/j.grj.2014.03.001.

90. Sharov N.V., Mitrofanov F.P., Verba M.L., Gillen K. (Eds.), 2005. Lithospheric Structure of the Russian Barents Region. Karelian Research Centre RAS, Petrozavodsk, 318 p. (in Russian) [Строение литосферы российской части Баренц-региона / Ред. Н.В. Шаров, Ф.П. Митрофанов, М.Л. Верба, К. Гиллен. Петрозаводск: КНЦ РАН, 2005. 318 с.].

91. Sobolev S.V., Babeyko A.Y., 1994. Modelling of mineralogical composition, density and elastic wave velocities in anhydrous magmatic rocks. Surveys in Geophysics 15 (5), 515–544. http://dx.doi.org/10.1007/BF00690173.

92. Strakhov V.N., 1990. On linear inverse problems of gravimetry and magnetometry. Doklady AN SSSR 311 (6), 1348–1352 (in Russian) [Страхов В.Н. О решении линейных обратных задач гравиметрии и магнитометрии // Доклады АН СССР. 1990. Т. 311. № 6. С. 1348–1352].

93. Strakhov V.N., Romanyuk T.V., 1984. Restoration of the density of the Earth's crust and upper mantle according to the DSS and gravimetry I. Fizika Zemli (6), 44–63 (in Russian) [Страхов В.Н., Романюк Т.В. Восстановление плотностей земной коры и верхней мантии по данным ГСЗ и гравиметрии I. Физика Земли. 1984. № 6. С. 44–63].

94. Tarantola A., Valette B., 1982. Generalized nonlinear inverse problems solved using the least square criterion. Review of Geophysics and Space Physics 20 (2), 219–232. http://dx.doi.org/10.1029/RG020i002p00219.

95. Tesauro M., Kaban M., Cloetingh S., 2008. EuCRUST-07: A new reference model for the European crust. Geophysical Research Letters 35 (5), L05313. http://dx.doi.org/10.1029/2007GL032244.

96. Thybo H., Artemieva I.M., 2013. Moho and magmatic underplating in continental lithosphere. Tectonophysics 609, 605–619. http://dx.doi.org/10.1016/j.tecto.2013.05.032.

97. Tiberi C., Diament M., Déverchère J., Petit-Mariani C., Mikhailov V., Tikhotsky S., Achauer U., 2003. Deep structure of the Baikal rift zone revealed by join inversion of gravity and seismological data. Journal of Geophysical Research 108 (B3), 2133. http://dx.doi.org/10.1029/2002JB001880.

98. Tikhotsky S., Achauer U., 2008. Inversion of controlled-source seismic tomography and gravity data with the self-adaptive wavelet parametrization of velocities and interfaces. Geophysical Journal International 172 (2), 619–630. http://dx.doi.org/10.1111/j.1365-246X.2007.03648.x.

99. Van der Velden A.J., Cook F.A., 2005. Relict subduction zones in Canada. Journal of Geophysical Research 110 (B8), B08403. http://dx.doi.org/10.1029/2004JB003333.

100. Vernant P., Masson F., Bayer R., Paul A., 2002. Sequential inversion of local earthquake traveltimes and gravity anomaly – the example of the western Alps. Geophysical Journal International 150 (1), 79–90. http://dx.doi.org/10.1046/ j.1365-246X.2002.01694.x.

101. Vetrin V.R., 2006. Composition and structure of the lower crust of the Belomorian Mobile Belt, Baltic Shield. Petrology 14 (4), 415–438. http://dx.doi.org/10.1134/S0869591106040047.

102. Vetrin V.R., Lepekhina E.N., Paderin I.P., Rodionov N.V., 2009. Stages of the lower crust formation of the Belomorian mobile belt, Kola Peninsula. Doklady Earth Sciences 425 (1), 269–273. http://dx.doi.org/10.1134/S1028334 X09020214.

103. White D.J., Forsyth D.A., Asudeh I., Carr S.D., Wu H., Easton R.M., Mereu R.F., 2000. A seismic-based cross-section of the Grenville Orogen in southern Ontario and western Quebec. Canadian Journal of Earth Sciences 37 (2–3), 183–192. http://dx.doi.org/10.1139/e99-074.


Для цитирования:


Глазнев В.Н., Минц М.В., Муравина О.А., Раевский А.Б., Осипенко Л.Г. КОМПЛЕКСНАЯ 3-МЕРНАЯ ГЕОЛОГО-ГЕОФИЗИЧЕСКАЯ МОДЕЛЬ КОРЫ НА ЮГО-ВОСТОКЕ ФЕННОСКАНДИНАВСКОГО ЩИТА: ПРИРОДА ПЛОТНОСТНОЙ РАССЛОЕННОСТИ КОРЫ И КОРОМАНТИЙНОЙ ГРАНИЦЫ. Геодинамика и тектонофизика. 2015;6(2):133–170. https://doi.org/10.5800/GT-2015-6-2-0176

For citation:


Glaznev V.N., Mints M.V., Muravina O.M., Raevsky A.B., Osipenko L.G. COMPLEX GEOLOGICAL–GEOPHYSICAL 3D MODEL OF THE CRUST IN THE SOUTHEASTERN FENNOSCANDIAN SHIELD: NATURE OF DENSITY LAYERING OF THE CRUST AND THE CRUST–MANTLE BOUNDARY. Geodynamics & Tectonophysics. 2015;6(2):133–170. (In Russ.) https://doi.org/10.5800/GT-2015-6-2-0176

Просмотров: 1352


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)