STRUCTURE OF THE LITHOSPHERE AND SEISMOTECTONIC DEFORMATIONS IN CONTACT ZONE OF LITHOSPHERIC PLATES IN THE SUMATRA ISLAND REGION
https://doi.org/10.5800/GT-2015-6-1-0173
Abstract
The inversion seismic tomography algorithm (ITS) was used to calculate 3D seismic anomalies models for velocities of P- and S-waves in the zone of the Sunda arc, Indonesia. In the area under study, strong earthquakes (M>4.8) are clustered in the zone of high P-wave velocities. Earthquake hypocenters are located in zones of both high and low velocity anomalies of S-waves. The giant Sumatra earthquake (December 26, 2004, Mw=9.0) ruptured the greatest fault length of any recorded earthquake, and the rupture started in the area wherein the sign of P-wave velocity anomalies is abruptly changed. We calculated seismotectonic deformations (STD) from data on mechanisms of 2227 earthquakes recorded from 1977 to 2013, and our calculations show that the STD component, that controls vertical extension of rocks, is most stable through all the depth levels. In the marginal regions at the western and eastern sides of the Sunda arc, the crustal areas (depths from 0 to 35 km) are subject to deformations which sign is opposite to that of deformations in the central part. Besides, at depths from 70 to 150 km beneath the Sumatra earthquake epicentre area, the zone is subject to deformations which sign is opposite to that of deformations in the studied part of the Sunda arc. For earthquakes that may occur in the crust in the Sunda arc in the contact zone of the plates, maximum magnitudes depend on the direction of pressure imposed by the actively subducting plate, which is an additional criteria for determining the limit magnitude for the region under study.
About the Authors
O. A. KuchayRussian Federation
Candidate of Physics and Mathematics, Senior Researcher
Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of RAS
3 Acad. Koptyug prosp., Novosibirsk 630090, Russia
Tel. +7(383)3333792
N. A. Bushenkova
Russian Federation
Candidate of Geology and Mineralogy, Senior Researcher
Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of RAS
3 Acad. Koptyug prosp., Novosibirsk 630090, Russia
Tel. +7(383)3309201
A. A. Tataurova
Russian Federation
Post-Graduate Student
Novosibirsk State University
2 Pirogov street, Novosibirsk 630090, Russia
References
1. Cheng Zong-yi, Zhu Wen-yao, 2001. Crustal deformation of Asia-Pacific area determined from the GPS data of APRGP97–APRGP99. Acta Seismologica Sinica 14 (3), 280–292. http://dx.doi.org/10.1007/s11589-001-0006-6.
2. Chlieh M., Avouac J. P., Hjorleifsdottir V., Song T. R. A., Ji C., Sieh K., Sladen A., Hebert H., Prawirodirdjo L., Bock Y., Galetzka J., 2007. Coseismic slip and afterslip of the Great (Mw 9.15) Sumatra-Andaman Earthquake of 2004. Bulletin of the Seismological Society of America 97 (1A), S152–S173. http://dx.doi.org/10.1785/0120050631.
3. Dewey J.W., Choy G., Presgrave B., Sipkin S., Tarr A.C., Benz H., Earle P., Wald D., 2007. Seismicity associated with the Sumatra-Andaman Island earthquake of 26 December 2004. Bulletin of the Seismological Society of America 97 (1A), S25–S41. http://dx.doi.org/10.1785/0120050626.
4. Engdahl E.R., Villaseñor A., DeShon H.R, Thurber C.H., 2007. Teleseismic relocation and assessment of seismicity (1918–2005) in the region of the 2004 Mw 9.0 Sumatra-Andaman and 2005 Mw 8.6 Nias Island great earthquakes. Bulletin of the Seismological Society of America 97 (1A), S43–S61. http://dx.doi.org/10.1785/0120050614.
5. Hafkenscheid, Buiter S.J.H., Woltel M.J.R., Spakman W., Bijwaard H., 2001. Modelling the seismic velocity structure beneath Indonesia: comparison with tomography. Tectonophysics 333 (1–2), 35–46. http://dx.doi.org/10.1016/ S0040-1951(00)00265-1.
6. Huchon P., Le Pichon X., 1984. Sunda Strait and Central Sumatra fault. Geology 12 (11), 668–672. http://dx.doi.org/ 10.1130/0091-7613(1984)12<668:SSACSF>2.0.CO;2.
7. Jaxybulatov K., Koulakov I., Ibs-von Seht M., Klinge K., Reichert C., Dahren B., Troll V.R., 2011. Evidence for high fluid/melt content beneath Krakatau volcano (Indonesia) from local earthquake tomography. Journal of Volcanology and Geothermal Research 206 (3–4), 96–105. http://dx.doi.org/10.1016/j.jvolgeores.2011.06.009.
8. Kostrov B.V., 1975. Mechanics of Tectonic Earthquake. Nauka, Moscow, 174 p. (in Russian) [Костров Б.В. Механика тектонического землетрясения. М.: Наука, 1975. 174 с.].
9. Koulakov I., 1998. Three-dimensional seismic structure of the upper mantle beneath the central part of the Eurasian continental. Geophysical Journal International 133 (2), 467–489. http://dx.doi.org/10.1046/j.1365-246X.1998.004 80.x.
10. Koulakov I., Sobolev S.V., 2011. A tomographic image of Indian lithosphere break-off beneath the Pamir-Hindukush region. Geophysical Journal International 164 (2), 425–440. http://dx.doi.org/10.1111/j.1365-246X.2005.02841.x.
11. Koulakov I., Sobolev S.V., Weber M., Oreshin S., Wylegalla K., Hofstetter R., 2006. Teleseismic tomography reveals no signature of the Dead Sea Transform in the upper mantle structure. Earth and Planetary Science Letter 252 (1–2), 189–200. http://dx.doi.org/10.1016/j.epsl.2006.09.039.
12. Koulakov I., Tychkov S., Bushenkova N., Vasilevsky A., 2002. Structure and dynamics of the upper mantle beneath the Alpine-Himalayan orogenic belt, from teleseismic tomography. Tectonophysics 358 (1–4), 77–96. http://dx.doi.org/ 10.1016/S0040-1951(02)00418-3.
13. Kulakov I.Y., Tychkov S.A., Bushenkova N.A., Vasilevsky A.N., 2003. Three-dimensional velocity structure of upper mantle beneath the Alpine-Himalayan orogen. Geologiya i Geofizika (Russian Geology and Geophysics) 44 (6), 566–586.
14. Kundu B., Gahalaut V.K., 2011. Slab detachment of subducted Indo-Australian plate beneath Sunda arc, Indonesia. Journal of Earth System Science 120 (2), 193–204. http://dx.doi.org/10.1007/s12040-011-0056-7.
15. Radha Krishna M., Sanu T.D., 2002. Shallow seismicity, stress distribution and crustal deformation pattern in the Andaman-West Sunda arc and Andaman Sea, northeastern Indian Ocean. Journal of Seismology 6 (1), 25–41. http://dx.doi.org/10.1023/A:1014203306506.
16. Rebetskii Y.L., Marinin A.V., 2006. Stressed state of the Earth’s crust in the western region of the Sunda subduction zone before the Sumatra-Andaman earthquake on December 26, 2004. Doklady Earth Sciences 407 (1), 321–325. http://dx.doi.org/10.1134/S1028334X06020383.
17. Riznichenko Yu.V., 1985. Problems of Seismology. Nauka, Moscow, 408 p. (in Russian) [Ризниченко Ю.В. Проблемы сейсмологии. М.: Наука, 1985. 408 с.]
18. Shevchenko V.I., Lukk A.A., Prilepin M.T., 2006. The Sumatra earthquake of December 26, 2004, as an event unrelated to the plate-tectonic process in the lithosphere. Izvestiya, Physics of the Solid Earth 42 (12), 1018–1037. http://dx.doi. org/10.1134/S1069351306120068.
19. The Global Centroid-Moment-Tensor (CMT) Project, 2015. Available from: http://www.globalcmt.org.
20. Vallee M., 2007. Rupture properties of the giant Sumatra earthquake imaged by empirical Green’s function analysis. Bulletin of the Seismological Society of America 97 (1A), S103–S114. http://dx.doi.org/10.1785/0120050616.
21. Van der Hilst R.D., Widyantoro S., Engdahl E.R., 1997. Evidence for deep mantle circulation from global tomography. Nature 386 (6625), 578–584. http://dx.doi.org/10.1038/386578a0.
Review
For citations:
Kuchay O.A., Bushenkova N.A., Tataurova A.A. STRUCTURE OF THE LITHOSPHERE AND SEISMOTECTONIC DEFORMATIONS IN CONTACT ZONE OF LITHOSPHERIC PLATES IN THE SUMATRA ISLAND REGION. Geodynamics & Tectonophysics. 2015;6(1):77–89. (In Russ.) https://doi.org/10.5800/GT-2015-6-1-0173