Neotectonics and tectonic stresses of the Sakhalin Island
https://doi.org/10.5800/GT-2017-8-1-0237
Abstract
The paper describes the neotectonics of the Sakhalin Island and analyzes the latest and recent tectonic stresses in the study area in order to establish their differences in the Amur and Okhotsk microplates, which boundary is confined to the Tym-Poronaisk fault, the largest NS-striking fault in the Central Sakhalin (Fig. 1). Our map of the structural geomorphological features of the study area (Fig. 2) shows three longitudinal zones: the western and eastern uplifts, and the Central Sakhalin basin between the uplifts. In the Southern Sakhalin, neotectonic stresses were studied by a combination of tectonophysical methods and the method of structural geology (Figures 3 to 6, and Table). Our study shows that the regional axes of maximum and minimum compressive principal normal stresses are primarily of the subhorizontal orientations (Fig. 5, Д). In the Northern and Central Sakhalin, neotectonic stresses were reconstructed by the structural geomorphology method. The compression axes are oriented sublatitudinally, with the NE-trending strike in the Northern Sakhalin (Fig. 7, A), and the extension axes are oriented submeridionally; in the Northern Sakhalin, respectively, they are oriented in the NW direction. The results of our study of neotectonic stresses were used to construct a map of recent geodynamics of Sakhalin (Fig. 7, Б), which shows zones differing in the geodynamic settings of the most recent faulting. According to the analysis of the recent tectonic stress with respect to the earthquake focal mechanisms in the period from 1978 to 2015 (Fig. 8), recent stresses dominating in Sakhalin have mainly the sublatitudinal low-angle orientations of the deviatoric compression axis. The submeridional low-angle orientations of the deviatoric extension axes are observed in the Northern Sakhalin and partly in the north of the Southern Sakhalin (see Fig. 8). The high-angle axes of deviatoric extension are typical of the western and central parts of the Southern Sakhalin, and such extension leads to horizontal compression and reverse faulting. In some areas of the recent stress field, the deviatoric axes of compression and extension have unstable orientations. The latitudinal boundaries of such areas are nearly coincident with the boundaries of the zones that differ in the geodynamic settings of the most recent faulting, which means that these areas and zones are reliably identified. The relative inhomogeneity of the neotectonic and recent stress fields in the Southern Sakhalin does not give grounds to distinguish differences in the state of crustal stresses in the areas located on the sides of the Southern Sakhalin fault. As a consequence, a boundary between the Amur and the Okhotsk Plate in the South Sakhalin cannot be drawn along this fault. It is most likely that this boundary coincides with the Western-Sakhalin fault in the southern areas of the study region. Our data on the Central and Northern Sakhalin does not contradict with the conclusion in [Savostin et al., 1982] concerning this boundary.
About the Authors
L. A. SimRussian Federation
Doctor of Geology and Mineralogy, Lead Researcher
10 Bol’shaya Gruzinskaya street, Moscow D-242 123242, GSP-5
L. M. Bogomolov
Russian Federation
Doctor of Physics and Mathematics, Director
1B Nauka street, Yuzhno-Sakhalinsk 693022
G. V. Bryantseva
Russian Federation
Candidate of Geology and Mineralogy, Assistant Professor, Faculty of geology
1 Leninskie Gory, Moscow 119991
P. A. Savvichev
Russian Federation
Lead Engineer
10 Bol’shaya Gruzinskaya street, Moscow D-242 123242, GSP-5
References
1. Bulgakov R.F., Ivashchenko A.I., Kim Ch.U., Sergeev K.F., Strel’tsov M.I., Kozhurin A.I., Besstrashnov V.M., Strom A.L., Suzuki Y., Tsutsumi H., Watanabe M., Ueki T., Shimamoto T., Okumura K., Goto H., Kariya Y., 2002. Active faults in northeastern Sakhalin. Geotectonics 36 (3), 227–246.
2. Danilovich V.N., 1961. The Method of Belts in Studies of Fracturing Associated with Shearing. Irkutsk Polytechnic Institute, Irkutsk, 47 p. (in Russian) [Данилович В.Н. Метод поясов в исследовании трещиноватости, связанной с разрывными смещениями. Иркутск: Иркутский политехнический институт, 1961. 47 с.].
3. Filonenko V.P., Pavlenkova G.A., 2006. Some features of the dynamics of the crust in the Okhotsk Sea region. In: L.N. Solodilov (Ed.), Geophysics of the XXI century: 2005: Proceedings of the V.V. Fedynsky seventh geophysical readings. Nauchny Mir, Moscow, p. 101–107 (in Russian) [Филоненко В.П., Павленкова Г.А. Некоторые особенности динамики земной коры Охотоморского региона // Геофизика ХХI столетия: 2005: Сборник трудов Седьмых геофизических чтений им. В.В. Федынского / Ред. Л.Н. Солодилов. М.: Научный мир, 2006. С. 101–107].
4. Gatinsky Yu.G., Rundquist D.V., 2004. Geodynamics of Eurasia: Plate tectonics and block tectonics. Geotectonics 38 (1), 1–16.
5. Golozubov V.V., Kasatkin S.A., Grannik V.M., Nechayuk A.E., 2012. Deformation of the Upper Cretaceous and Cenozoic complexes of the West Sakhalin terrane. Geotectonics 46 (5), 333–351. http://dx.doi.org/10.1134/S0016852112050020.
6. Grachev A.F. (Ed.), 1998. Recent Neotectonics of Northern Eurasia. Explanatory Note to the Map of Recent Neotectonics of Northern Eurasia, scale of 1:5000000. GEOS, Moscow, 147 p. (in Russian) [Новейшая тектоника Северной Евразии: Объяснительная записка к карте новейшей тектоники Северной Евразии масштаба 1:5000000 / Ред. А.Ф. Грачев. М.: ГЕОС, 1998. 147 с.].
7. Grannik V.M., 2008. Geology and Geodynamics of the Southern Okhotsk Sea Region in the Mesozoic and Cenozoic. Dal'nauka, Vladivostok, 297 p. (in Russian) [Гранник В.М. Геология и геодинамика южной части Охотоморского региона в мезозое и кайнозое. Владивосток: Дальнаука, 2008. 297 с.].
8. Grannik V.M., 2011. Hokkaido-Sakhalin folded area: its geological structure and development. In: Current state of Earth Sciences. Proceedings of the international conference dedicated to the memory of V.E. Khain (1–4 February 2011, Moscow). Geological Faculty, Lomonosov Moscow State University, Moscow, p. 494–498 (in Russian) [Гранник В.М. Хоккайдо-Сахалинская складчатая область: геологическое строение и развитие // Современное состояние наук о Земле: Материалы международной конференции, посвященной памяти В.Е. Хаина (г. Москва, 1–4 февраля 2011 г.). М.: Геологический факультет МГУ им. М.В. Ломоносова, 2011. C. 494–498].
9. Gushchenko O.I., 1979. The method of kinematic analysis of destruction structures in reconstruction of tectonic stress fields. In: A.S. Grigoriev, D.N. Osokina (Eds.), Fields of stress and strain in the lithosphere. Nauka, Moscow, p. 7–25 (in Russian) [Гущенко О.И. Метод кинематического анализа структур разрушения при реконструкции полей тектонических напряжений // Поля напряжений и деформаций в литосфере / Ред. А.С. Григорьев, Д.Н. Осокина. М.: Наука, 1979. С. 7–25].
10. Gzovsky М.V., 1975. Fundamentals of Tectonophysics. Nauka, Moscow, 536 p. (in Russian) [Гзовский М.В. Основы тектонофизики. М.: Наука, 1975. 536 с].
11. Imaev V.S., Imaeva L.P., Koz’min B.M., 2000. Seismotectonics of Yakutia. GEOS, Moscow, 226 p. (in Russian) [Имаев В.С., Имаева Л.П., Козьмин Б.М. Сейсмотектоника Якутии. М.: ГЕОС, 2000. 226 с.].
12. Ismail-Zadeh A., Honda S., Tsepelev I., 2013. Linking mantle upwelling with the lithosphere decent and the Japan Sea evolution: a hypothesis. Scientific Reports 3, 1137. http://dx.doi.org/10.1038/srep01137.
13. Kharakhinov V.V., 2010. Petroleum Geology of the Sakhalin Region. Nauchny Mir, Moscow, 275 p. (in Russian) [Харахинов В.В. Нефтегазовая геология Сахалинского региона. М.: Научный мир, 2010. 275 с.].
14. Kharakhinov V.V., Gal'tsev-Bezyuk S.D., Tereshchenkov A.A., 1984. Faults of Sakhalin Island. Tikhookeanskaya Geologiya (Russian Journal of Pacific Geology) (2), 77–87 (in Russian) [Харахинов В.В., Гальцев-Безюк С.Д., Терещенков А.А. Разломы Сахалина // Тихоокеанская геология. 1984. № 2. С. 77–87].
15. Konovalov A.V., Nagornykh T.V., Safonov D.A., 2014. Recent Study of Earthquake Source Mechanisms in Sakhalin. Dal’nauka, Vladivostok, 252 p. (in Russian) [Коновалов А.В., Нагорных Т.В., Сафонов Д.А. Современные исследования механизмов очагов землетрясений о. Сахалин. Владивосток: Дальнаука, 2014. 252 с.].
16. Korchuganova N.I., Kostenko N.P., Mezhelovsky N.N., 2001. Neotectonic Methods of Mineral Exploration. RF MNR, Geokart, MGGA, Moscow, 212 p. (in Russian) [Корчуганова Н.И., Костенко Н.П. Межеловский Н.Н. Неотектонические методы поисков полезных ископаемых. М.: МПР РФ, Геокарт, МГГА, 2001. 212 с.].
17. Kozhurin A.I., 2013. Active Geodynamics of the Northwestern Sector of the Pacific Tectonic Belt (According to the Study of Active Faults). Abstract of the PhD Thesis (Geology and Mineralogy). Geological Institute RAS, Moscow, 46 p. (in Russian) [Кожурин А.И. Активная геодинамика северо-западного сектора Тихоокеанского тектонического пояса (по данным изучения активных разломов): Автореф. дис. … докт. геол.-мин. наук. М.: ГИН РАН, 2013. 46 с.]
18. Kuchai V.K., 1987. Modern orogenic structure of the Southern Sakhalin. Tikhookeanskaya Geologiya (Russian Journal of Pacific Geology) (1), 50–57 (in Russian) [Кучай В.К. Современная орогенная структура южной части о. Сахалин // Тихоокеанская геология. 1987. № 1. С. 50–57].
19. Levin B.W., Tikhonov I.N. (Eds.), 2009. The 2 August, 2007 Nevelsk Earthquake and Tsunami, Sakhalin Island. Yanus-K, Moscow, 204 p. (in Russian) [Невельское землетрясение и цунами 2 августа 2007 года, о. Сахалин / Ред. Б.В. Левин, И.Н. Тихонов. М.: Янус-К, 2009. 204 с.].
20. Nikolaev P.N., 1992. Method of Tectono-Dynamic Analysis. Nedra, Moscow, 263 p. (in Russian) [Николаев П.Н. Методика тектоно-динамического анализа. М.: Недра, 1992. 263 с.].
21. Osokina D.N., 1987. On the hierarchical properties of the tectonic field of stresses and deformations in the Earth's crust. In: A.S. Grigoriev, D.N. Osokina (Eds.), Fields of stresses and deformations in the Earth's crust. Nauka, Moscow, p. 136–151 (in Russian) [Осокина Д.Н. Об иерархических свойствах тектонического поля напряжений и деформаций в земной коре // Поля напряжений и деформаций в земной коре / Ред. А.С. Григорьев, Д.Н. Осокина. М.: Наука, 1987. С. 136–151].
22. Rebetsky Yu.L., 1999. Methods for reconstructing tectonic stresses and seismotectonic deformations based on the modern theory of plasticity. Doklady Earth Sciences 365A (3), 370–373.
23. Rebetsky Yu.L., 2007. Tectonic Stresses and Strength of Mountain Ranges. Akademkniga, Moscow, 406 p. (in Russian) [Ребецкий Ю.Л. Тектонические напряжения и прочность горных массивов. М.: Академкнига, 2007. 406 с.].
24. Rogozhin E.A., 1996. Focal mechanism of the Neftegorsk, Sakhalin earthquake of May 27 (28), 1995. Geotectonics 30 (2), 124–131.
25. Rogozhin E.A., 2012. Essays in Regional Seismotectonics. IPE RAS, Moscow, 340 p. (in Russian) [Рогожин Е.А. Очерки региональной сейсмотектоники. М.: ИФЗ РАН, 2012. 340 c.].
26. Rogozhin E.A., Reisner G.I., Besstrashnov V.M., Strom A.L., Borisenko L.S., 2002. Seismotectonic settings of Sakhalin Island. Izvestiya, Physics of the Solid Earth 38 (3), 207–214.
27. Rozhdestvensky V.S., 1969. Strike-slip faults in the East Sakhalin mountains. Doklady AN SSSR 187 (1), 156–159 (in Russian) [Рождественский В.С. Сдвиги Восточно-Сахалинских гор // Доклады АН СССР. 1969. Т. 187. № 1. С. 156–159].
28. Rozhdestvensky V.S., 1987. Tectonic evolution of the Sakhalin island. Tikhookeanskaya Geologiya (Russian Journal of Pacific Geology) (3), 42–51 (in Russian) [Рождественский В.С. Тектоническое развитие о. Сахалин // Тихоокеанская геология. 1987. № 3. С. 42–51].
29. Rozhdestvensky V.S., 1997. The role of strike-slip faults in the formation of the structure of Sakhalin, hydrocarbon deposits and mineralized zones. In: B.N. Piskunov (Ed.), Geology and Geodynamics of the Sikhote-Alin and Hokkaido-Sakhalin Folded Regions. IMGG FEB RAS, Yuzhno-Sakhalinsk, p. 80–109 (in Russian) [Рождественский В.С. Роль сдвигов в формировании структуры Сахалина, месторождений углеводородов и рудоносных зон // Геология и геодинамика Сихотэ-Алинской и Хоккайдо-Сахалинской складчатых областей / Ред. Б.Н. Пискунов. Южно-Сахалинск: ИМГиГ ДВО РАН, 1997. С. 80–109].
30. Savostin L.A., Verzhbitskaya A.I., Baranov B.V., 1982. Modern tectonics of the Okhotsk Sea region. Doklady AN SSSR 266 (4), 961–965 (in Russian) [Савостин Л.А., Вержбицкая А.И., Баранов Б.В. Современная тектоника Охотоморского региона // Доклады АН СССР. 1982. Т. 266. № 4. С. 961–965].
31. Seno T., Sakurai T., Stein S., 1996. Can the Okhotsk Plate be discriminated from the North American plate? Journal of Geophysical Research: Solid Earth 101 (B5), 11305–11315. http://dx.doi.org/10.1029/96JB00532.
32. Sim L.A., 1982. Determination of the regional field from the data on local stresses on separate sites // Izvestia vuzov. Geologiya i Razvedka (Geology and Exploration) (4), 35–40 (in Russian) [Сим Л.А. Определение регионального поля по данным о локальных напряжениях на отдельных участках // Известия вузов. Геология и разведка. 1982. № 4. С. 35–40].
33. Sim L.A., 1991. The study of tectonic stresses from geological indicators (methods, results, and recommendations). Izvestia vuzov. Geologiya i Razvedka (Geology and Exploration) (10), 3–22 (in Russian) [Сим Л.А. Изучение тектонических напряжений по геологическим индикаторам (методы, результаты, рекомендации) // Известия вузов. Геология и разведка. 1991. № 10. С. 3–22].
34. Sim L.A., 2000. Impact of global tectogenesis on the most recent state of stresses in platforms in Europe. In: M.V. Gzovsky and the development of tectonophysics. Nauka, Moscow, p. 326–350 (in Russian) [Сим Л.А. Влияние глобального тектогенеза на новейшее напряженное состояние платформ Европы // М.В. Гзовский и развитие тектонофизики. М.: Наука, 2000. С. 326–350].
35. Sim L.A., Sycheva N.A., Sychev V.N., Marinin A.V., 2014. The pattern of the paleo-and present-day stresses of Northern Tien Shan. Izvestiya, Physics of the Solid Earth 50 (3), 378–392. http://dx.doi.org/10.1134/S1069351314030100.
36. Sim L.A., Zhirov D.V., Marinin A.V., 2011. Stress and strain reconstruction for the eastern segment of the Baltic shield. Geodynamics & Tectonophysics 2 (3), 219–243 (in Russian) [Сим Л.А., Жиров Д.В., Маринин А.В. Реконструкция напряженно-деформированного состояния восточной части Балтийского щита // Геодинамика и тектонофизика. 2011. Т. 2. № 3. С. 219–243]. http://dx.doi.org/10.5800/GT-2011-2-3-0044.
37. Soloviev S.L., Oskorbin L.S., Ferchev M.D., 1967. Earthquakes on Sakhalin. Nauka, Moscow, 178 p. (in Russian) [Со-ловьев С.Л., Оскорбин Л.С., Ферчев М.Д. Землетрясения на Сахалине. М.: Наука, 1967. 178 с.].
38. Tataurova А.A., 2015. Stress and strain fields based on data on crustal earthquake mechanisms in Sakhalin Island. Bulletin of Kamchatka Regional Association Education–Science Centre. Earth Sciences (3), 93–101 (in Russian) [Татаурова А.А. Поля напряжений и деформаций по данным механизмов коровых землетрясений о. Сахалин // Вестник КРАУНЦ. Науки о Земле. 2015. № 3. С. 93–101].
39. Vasilenko N.F., Prytkov A.S., 2012. GPS-based modeling of the interaction between the lithospheric plates in Sakhalin. Russian Journal of Pacific Geology 6 (1), 35–41. http://dx.doi.org/10.1134/S1819714012010137.
40. Voeikova O.A., Nesmeyanov S.A., Serebryakova L.I., 2007. Neotectonics and Active Faults of Sakhalin. Nauka, Moscow, 187 p. (in Russian) [Воейкова О.А., Несмеянов С.А., Серебрякова Л.И. Неотектоника и активные разломы Сахалина. М.: Наука, 2007. 187 с.].
41. Zharov A.E., 2004. Geological Structure and Cretaceous-Paleogene Geodynamics of South-East Sakhalin. Sakhalin Publishing House, Yuzhno-Sakhalinsk, 191 p. (in Russian) [Жаров А.Е. Геологическое строение и мел-палеогеновая геодинамика Юго-Восточного Сахалина. Южно-Сахалинск: Сахалинское кн. изд-во, 2004. 191 с.].
42. Zlobin T.K., 2005. Dynamics of the Seismic Process and the Structure of Focal Zones of Strong Earthquakes in Sakhalin and the Kuriles. Sakhalin State University, Yuzhno-Sakhalinsk, 141 p. (in Russian) [Злобин Т.К. Динамика сейсмического процесса и строение очаговых зон сильных землетрясений Сахалина и Курил. Южно-Сахалинск: СахГУ, 2005. 141 с.].
Review
For citations:
Sim L.A., Bogomolov L.M., Bryantseva G.V., Savvichev P.A. Neotectonics and tectonic stresses of the Sakhalin Island. Geodynamics & Tectonophysics. 2017;8(1):181-202. (In Russ.) https://doi.org/10.5800/GT-2017-8-1-0237