Preview

Геодинамика и тектонофизика

Расширенный поиск

Новейшая геодинамика Центральной Азии: первичные и вторичные мантийные расплавные аномалии в контексте орогенеза, рифтогенеза и движения-взаимодействия литосферных плит

https://doi.org/10.5800/GT-2017-8-1-0232

Полный текст:

Аннотация

По данным об эволюции расплавных аномалий в контексте орогенеза, рифтогенеза, движения и взаимодействия литосферных плит развита обобщающая модель глубинной динамики Азии, в которой важнейшую роль играли первичные Гобийская, Байкальская и Северо-Забайкальская расплавные аномалии переходного слоя и вторичные Хангайская, Саянская и Северо-Байкальская расплавные аномалии верхней мантии. Предполагается, что первичные расплавные аномалии формировались в начале новейшего геодинамического этапа (около 90 млн лет назад) в результате нарушения переходного слоя нижнемантийными потоками из-за лавинного обрушения слэбового материала, который стагнировал под закрывшимися фрагментами Солонкерского, Урало-Монгольского палеоокеанов и Монголо-Охотского залива Палеопацифика, а вторичные получили развитие в связи с процессами раннесреднемиоценовой структурной перестройки в зонах Тихоокеанско-Азиатского и Индо-Азиатского взаимодействия. Первичные расплавные аномалии служили в качестве главного фактора пространственного распределения усилий и процессов новейшего геодинамического этапа, а вторичные явились следствием движения литосферы относительно первичных аномалий и способствовали развитию орогенеза и рифтогенеза. Японско-Байкальский геодинамический коридор сдерживался латеральными зонами конвергентного взаимодействия Индостана и Азии на юго-западе и Северной Америки и Азии на северо-востоке. В латеральных зонах сдерживания позднефанерозойские палеослэбы и восходящие мантийные потоки были зафиксированы в переходном слое и верхней мантии без разрушения астеносферными потоками.

Об авторах

И. С. Чувашова
Институт земной коры СО РАН Иркутский государственный университет
Россия

канд. геол.-мин. наук, с.н.с.
664033, Иркутск, ул. Лермонтова, 128

геологический факультет
664003, Иркутск, ул. Ленина, 3

Тел. +7(3952)511659



С. В. Рассказов
Институт земной коры СО РАН Иркутский государственный университет
Россия

докт. геол.-мин. наук, профессор, зав. лабораторией
664033, Иркутск, ул. Лермонтова, 128

геологический факультет
664003, Иркутск, ул. Ленина, 3

Тел. (3952)511659



Сунь Йи-минь
Институт вулканов и минеральных источников Хэйлунцзянской академии наук
Китай
научный сотрудник
164155, Удаляньчи, Хэйлунцзян


Список литературы

1. Akinin V.V., 2012. Late Mesozoic and Cenozoic magmatism and reformation of the lower crust in the North Pacific framing. Abstract of the thesis. IGEM, Moscow, 43 p. (in Russian) [Акинин В.В. Позднемезозойский и кайнозойский магматизм и преобразование нижней коры в северном обрамлении Пацифики: Автореф. дис. … докт. геол.-мин. наук. М.: ИГЕМ РАН, 2012. 43 с.].

2. Anderson D.L., 1995. Lithosphere, asthenosphere, and perisphere. Reviews of Geophysics 33 (1), 125-149. https://doi.org/10.1029/94RG02785.

3. Anderson D.L., 2007. New theory of the Earth. Cambridge University Press, Cambridge, 384 p.

4. Anderson D.L., Tanimoto T., Zhang Y-S., 1992. Plate tectonics and hotspots: the third dimension. Science 256 (5064), 1645-1651. https://doi.org/10.1126/science.256.5064.1645.

5. Arndt N., Lesher C.M., Barnes S.J., 2008. Komatiite. Cambridge University Press, Cambridge, 458 p.

6. Beattie P., 1993. Uranium–thorium disequilibria and partitioning on melting of garnet peridotite. Nature 363 (6424), 63–65. https://doi.org/10.1038/363063a0.

7. Belichenko V.G., Boos R.G., 1990. The problem of distinguishing the early Precambrian in the Central Asia belt of Paleozoic structures. Geologiya i Geofizika (Russian Geology and Geophysics) (11), 3–9 (in Russian) [Беличенко В.Г., Боос Р.Г. Проблема выделения раннего докембрия в Центрально-Азиатском поясе палеозоид // Геология и геофизика. 1990. № 11. С. 3–9].

8. Belyi V.F., Belaya B.V., 1998. The Late Stage of the Okhotsk-Chukchi Volcanogenic Belt Development (the Enmyvaam River Upper Run Area). NEISRI FEB RAS, Magadan, 108 p. (in Russian) [Белый В.Ф., Белая Б.В. Поздняя стадия развития Охотско-Чукотского вулканогенного пояса (верхнее течение р. Энмываам). Магадан: СВКНИИ ДВО РАН, 1998. 108 с.].

9. Bercovici D., Karato S., 2003. Whole mantle convection and transition-zone water filter. Nature 425 (6953), 39–44. https://doi.org/10.1038/nature01918.

10. Bijwaard H., Spakman W., Engdahl E.R., 1998. Closing the gap between regional and global travel time tomography. Journal of Geophysical Research: Solid Earth 103 (B12), 30055–30078. https://doi.org/10.1029/98JB02467.

11. Calais E., Dong L., Wang M., Shen Z., Vergnolle M., 2006. Continental deformation in Asia from a combined GPS solution. Geophysical Research Letters 33 (24), L24319. https://doi.org/10.1029/2006GL028433.

12. Calais E., Vergnolle M., San’kov V., Lukhnev A., Miroshnitchenko A., Amarjargal S., Déverchère J., 2003. GPS measurements of crustal deformation in the Baikal-Mongolia area (1994–2002): Implications for current kinematics of Asia. Journal of Geophysical Research: Solid Earth 108 (B10), 2501. http://doi.org/10.1029/2002JB002373.

13. Castillo P., 1988. The Dupal anomaly as a trace of the upwelling lower mantle. Nature 336 (6200), 667–670. https://doi.org/10.1038/336667a0.

14. Chen M., Niu F., Liu Q., Tromp J., 2015a. Mantle-driven uplift of Hangai Dome: New seismic constraints from adjoint tomography. Geophysical Research Letters 42 (17), 6967–6974. https://doi.org/10.1002/2015GL065018.

15. Chen M., Niu F., Liu Q., Tromp J., Zheng X., 2015b. Multiparameter adjoint tomography of the crust and upper mantle beneath East Asia: 1. Model construction and comparisons. Journal of Geophysical Research: Solid Earth 120 (3), 1762–1786. https://doi.org/10.1002/2014JB011638.

16. Chuvashova I., Rasskazov S., Yasnygina T., 2016. Mid-Miocene thermal impact on the lithosphere by sub-lithospheric convective mantle material: Transition from high- to moderate-Mg magmatism beneath Vitim Plateau, Siberia. Geoscience Frontiers (in press). https://doi.org/10.1016/j.gsf.2016.05.011.

17. Condie K.C., 2001. Mantle Plumes and Their Record in Earth History. Cambridge University Press, Cambridge, 246 p.

18. Courtillot V., Olson P., 2007. Mantle plumes link magnetic superchrons to Phanerozoic mass depletion events. Earth and Planetary Science Letters 260 (3–4), 495–504. https://doi.org/10.1016/j.epsl.2007.06.003.

19. DeMets C., Gordon R.G., Argus D.F., Stein S., 1990. Current plate motions. Geophysical Journal International 101 (2), 425–478. https://doi.org/10.1111/j.1365-246X.1990.tb06579.x.

20. DeMets C., Gordon R.G., Argus D.F., Stein S., 1994. Effect of recent revisions to the geomagnetic reversal time-scale on estimates of current plate motions. Geophysical Research Letters 21 (20), 2191-2194. https://doi.org/10.1029/94GL02118.

21. Duncan R.A., Petersen N., Hargraves R.B., 1972. Mantle plumes, movement of European plate and polar wandering. Nature 239 (5367), 82-86. https://doi.org/10.1038/239082a0.

22. Engebretson D.C., Cox A., Gordon R.G., 1984. Relative motion between oceanic plates of the Pacific basin. Journal of Geophysical Research: Solid Earth 89 (B12), 10291–10310. https://doi.org/10.1029/JB089iB12p10291.

23. Engebretson D.C., Cox A., Gordon R.G., 1985. Relative motions between oceanic and continental plates in the Pacific basin. Geological Society of America Special Papers, vol. 206, p. 1-60. https://doi.org/10.1130/SPE206-p1.

24. England P., Molnar P., 1997. Active deformation of Asia: from kinematics to dynamics. Science 278 (5338), 647–650. https://doi.org/10.1126/science.278.5338.647.

25. Forsyth D., Uyeda S., 1975. On the relative importance of the driving forces of plate motion. Geophysical Journal International 43(1), 163–200. https://doi.org/10.1111/j.1365-246X.1975.tb00631.x.

26. Foulger G.R., 2010. Plates vs. Plumes: A Geological Controversy. Wiley-Blackwell, New York, 328 p.

27. Fournier M., Jolivet L., Davy P., Thomas J.-C., 2004. Backarc extension and collision: an experimental approach to the tectonics of Asia. Geophysical Journal International 157 (2), 871–889. https://doi.org/10.1111/j.1365-246X.2004.02223.x.

28. Gao S., Davis P.M., Liu H., Slack P.D., Zorin Yu.A., Logatchev N.A., Kogan M., Burkholder P.D., Meyer R.P., 1994a. Asymmetric upwarp of the asthenosphere beneath the Baikal rift zone, Siberia. Journal of Geophysical Research: Solid Earth 99 (B8), 15319–15330. https://doi.org/10.1029/94JB00808.

29. Gao S., Davis P.M., Liu H., Slack P.D., Zorin Yu.A., Mordvinova V.V., Kozhevnikov V.M., Meyer R.P., 1994b. Seismic anisotropy and mantle flow beneath the Baikal rift zone. Nature 371 (6493), 82–84. https://doi.org/10.1038/371149a0.

30. Gatinsky Y.G., Rundquist D.V., 2004. Geodynamics of Eurasia: Plate tectonics and block tectonics. Geotectonics 38 (1), 1–16.

31. Gorbatov A., Widiyantoro S., Fukao Y., Gordeev E., 2000. Signature of remnant slabs in the North Pacific from P-wave tomography. Geophysical Journal International 142 (1), 27-36. https://doi.org/10.1046/j.1365-246x.2000.00122.x.

32. Gudmundsson Ó., Sambridge M., 1998. A regionalized upper mantle (RUM) seismic model. Journal of Geophysical Research: Solid Earth 103 (B4), 7121–7136. https://doi.org/10.1029/97JB02488.

33. Halim N., Cogne J.-P., Chen Y., Atasiei R., Courtillot V., Gilder S., Marcoux J., Zhao R., 1998. New Cretaceous and Early Tertiary paleomagnetic results from Xining-Lanzhou basin, Kunlun and Quigtang blocks, China: implications on the geodynamic evolution of Asia. Journal of Geophysical Research: Solid Earth 103 (B9), 21025–21045. https://doi.org/10.1029/98JB01118.

34. Han J., Zhou J-B., Wang В., Cao J-L., 2015. The final collision of the CAOB: Constraint from the zircon U-Pb dating of the Linxi Formation, Inner Mongolia. Geoscience Frontiers 6 (2), 211–225. https://doi.org/10.1016/j.gsf.2014.06.003.

35. He J., Liu M., Li Y., 2003. Is the Shanxi rift of northern China extending? Geophysical Research Letters 30 (23), 2313. https://doi.org/10.1029/2003GL018764.

36. Hirschmann M.M., Tenner T., Aubaud C., Withers A.C., 2009. Dehydration melting of nominally anhydrous mantle: The primacy of partitioning. Physics of the Earth and Planetary Interiors 176 (1–2), 54–68. https://doi.org/10.1016/j.pepi.2009.04.001.

37. Hofmann A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385 (6613), 219–229. https://doi.org/10.1038/385219a0.

38. Hooft E., Toomey D., Solomon S., 2003. Anomalously thin transition zone beneath the Galápagos hotspot. Earth and Planetary Science Letters 216 (1–2), 55–64. https://doi.org/10.1016/S0012-821X(03)00517-X.

39. Hoshi H., Takahashi M., 1999. Miocene counterclockwise rotation of Northeast Japan: a review and new model. Bulletin of the Geological Survey of Japan 50 (1), 3–16.

40. Houser C., Masters G., Flanagan M., Shearer P., 2008. Determination and analysis of long-wavelength transition zone structure using SS precursors. Geophysical Journal International 174 (1), 178–194. https://doi.org/10.1111/j.1365-246X.2008.03719.x.

41. Huang J., Zhao D., 2006. High-resolution mantle tomography of China and surrounding regions. Journal of Geophysical Research: Solid Earth 111 (B9), B09305. https://doi.org/10.1029/2005JB004066.

42. Ito E., Takahashi E., 1989. Postspinel transformations in the system Mg2SiO4–Fe2SiO4 and some geophysical implications. Journal of Geophysical Research: Solid Earth 94 (B8), 10637–10646. https://doi.org/10.1029/JB094iB08p10637.

43. Jenkyns H.C., Forster A., Schouten S., Sinninghe Damsté J.S., 2004. High temperatures in the Late Cretaceous Arctic Ocean. Nature 432 (7019), 888–892. https://doi.org/10.1038/nature03143.

44. Jin S., Park P.H., Zhu W., 2007. Micro-plate tectonics and kinematics in Northeast Asia inferred from a dense set of GPS observations. Earth and Planetary Science Letters 257 (3–4), 486–496. https://doi.org/10.1016/j.epsl.2007.03.011.

45. Jolivet L., Tamaki K., Fournier M., 1994. Japan Sea opening history and mechanism: A synthesis. Journal of Geophysical Research: Solid Earth 99 (B11), 22237–22259. https://doi.org/10.1029/93JB03463.

46. Karato S., 2012. On the origin of the asthenosphere. Earth and Planetary Science Letters 321–322, 95–103. https://doi.org/10.1016/j.epsl.2012.01.001.

47. Kirillova G.L., 1997. Correlation of Cretaceous events in East Asia with global events. Tikhookeanskaya geologiya (Russian Journal of Pacific Geology) 16 (6), 3-20. (in Russian) [Кириллова Г.Л. Корреляция меловых событий на востоке Азии с глобальными событиями // Тихоокеанская геология. 1997. Т. 16. № 6. С. 3-20].

48. Kirillova G.L., 2000. The Cretaceous in East of Russia: Sedimentation, Geodynamics, Biodiversity, and Climate. Dal'nauka, Vladivostok, 94 p. (in Russian) [Кириллова Г.Л. Мел востока России: седиментация, геодинамика, биоразнообразие, климат. Владивосток: Дальнаука, 2000. 94 с.].

49. Kotlyar I.N., Rusakova T.B., 2004. Cretaceous Magmatism and Ore-Bearing Capacity of the Okhotsk-Chukotka Region: Geological-Geochronological Correlation. NEISRI FEB RAS, Magadan, 152 p. (in Russian) [Котляр И.Н., Русакова Т.В. Меловой магматизм и рудоносность Охотско-Чукотского региона: геолого-геохронологические корреляции. Магадан: СВКНИИ ДВО РАН, 2004. 152 с.].

50. Kovalenko D.V., 2010. Paleomagnetism of Late Paleozoic, Mesozoic, and Cenozoic rocks in Mongolia. Russian Geology and Geophysics 51 (4), 387–403. https://doi.org/10.1016/j.rgg.2010.03.006.

51. Kovalenko V.I., Yarmolyuk V.V., Kovach V.P., Kotov A.B., Kozakov I.K., Sal’nikova E.B., 1996. Sources of Phanerozoic granitoids in Central Asia: Sm–Nd isotope data. Geochemistry International 34 (8), 628–640.

52. Kozakov I.K., Sal’nikova E.B., Wang T., Didenko A.N., Plotkina Y.V., Podkovyrov V.N., 2007. Crystalline complex in of the Lower Precambrian of the Dzabkhan microcontinent, Central Asia. Stratigraphy and Geological Correlation 15 (2), 121–140. https://doi.org/10.1134/S0869593807020013.

53. Kozhevnikov V.M., Seredkina A.I., Solovei O.A., 2014. 3D mantle structure of Central Asia from Rayleigh wave group velocity dispersion. Russian Geology and Geophysics 55 (10), 1239–1247. https://doi.org/10.1016/j.rgg.2014.09.010.

54. Kravchinsky V.A., Cogné J.-P., Harbert W.P., Kuzmin M.I., 2002. Evolution of the Mongol-Okhotsk ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia. Geophysical Journal International 148 (1), 34–57. https://doi.org/10.1046/j.1365-246x.2002.01557.x.

55. Kreemer C., Holt W.E., Haines A.J., 2003. An integrated global model of present-day plate motions and plate boundary deformation. Geophysical Journal International 154 (1), 8–34. https://doi.org/10.1046/j.1365-246X.2003.01917.x.

56. Larson R.L., 1991a. Latest pulse of Earth: Evidence for a mid-Cretaceous Superplume. Geology 19 (6), 547–550, https://doi.org/10.1130/0091-7613(1991)019<0547:LPOEEF>2.3.CO;2.

57. Larson R.L., 1991b. Geological consequences of superplumes. Geology 19 (10), 963–966, https://doi.org/10.1130/0091-7613(1991)019<0963:GCOS>2.3.CO;2.

58. Larson R.L., Erba E., 1999. Onset of the mid-Cretaceous greenhouse in the Barremian-Aptian: Igneous events and the biological, sedimentary, and geochemical responses. Paleoceanography 14 (6), 663–678, https://doi.org/10.1029/1999PA900040.

59. Lebedev S., Meier T., van der Hilst R.D., 2006. Asthenospheric flow and origin of volcanism in the Baikal area. Earth and Planetary Science Letters 249 (3–4), 415–424. http://dx.doi.org/10.1016/j.epsl.2006.07.007.

60. Lei J., Zhao D., 2005. P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia. Tectonophysics 397 (3–4), 281–295. https://doi.org/10.1016/j.tecto.2004.12.009.

61. Li C., van der Hilst R., Nafi T.M., 2006. Constraining P-wave velocity variations in the upper mantle beneath Southeast Asia. Physics of the Earth and Planetary Interiors 154 (2), 180–195 https://doi.org/10.1016/j.pepi.2005.09.008.

62. Li X., Kind R., Priestly K., Sobolev S.V., Tilmann F., Yuan X., Weber M., 2000. Mapping the Hawaiian plume conduit with converted seismic waves. Nature 405 (6789), 938–941. https://doi.org/10.1038/35016054.

63. Li X., Kind R., Yuan X., Sobolev S.V., Hanks W., Ramesh D.S., Gu Y., Dziewonski A., 2003. Seismic observation of narrow plumes in the oceanic upper mantle. Geophysical Research Letters 30 (6), 1334. https://doi.org/10.1029/2002GL015411.

64. Li Z.W., Roecker S., Li Z.H., Wei B., Wang H., Schelochkov G., Bragin V., 2009. Tomographic image of the crust and upper mantle beneath the western Tien Shan from the MANAS broadband deployment: Possible evidence for lithospheric delamination. Tectonophysics 477 (1–2), 49–57. https://doi.org/10.1016/j.tecto.2009.05.007.

65. Lithgow-Bertelloni C., Richards M.A., 1998. The dynamics of Cenozoic and Mesozoic plate motions. Reviews of Geophysics 36 (1), 27-78. https://doi.org/10.1029/97RG02282.

66. Logachev N.A., 1977. Volcanogenic and Sedimentary Formations of the East African Rift Zones. Nauka, Moscow, 183 p. (in Russian) [Логачев Н.А. Вулканогенные и осадочные формации рифтовых зон Восточной Африки. М.: Наука, 1977. 183 с.].

67. Machetel P., Humler E., 2003. High mantle temperature during Cretaceous avalanche. Earth and Planetary Science Letters 208 (3–4), 125-133. https://doi.org/10.1016/S0012-821X(03)00041-4.

68. Maruyama S., Santosh M., Zhao D., 2007. Superplume, supercontinent, and postperovskite: Mantle dynamics and anti-plate tectonics on the core–mantle boundary. Gondwana Research 11 (1–2), 7–37. https://doi.org/10.1016/j.gr.2006.06.003.

69. McArthur J.M., Howarth R.J., Bailey T.R., 2001. Strontium isotope stratigraphy: LOWESS version 3: best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. Journal of Geology 109 (2), 155–170. https://doi.org/10.1086/319243.

70. McArthur J.M., Howarth R.J., Shields G.A., 2012. Chapter 7 – Strontium isotope stratigraphy. In: F.M. Gradstein, J.G. Ogg, M.D. Schmitz, G.M. Ogg (Eds.), The geologic time scale. Elsevier, Amsterdam, p. 127–144. https://doi.org/10.1016/B978-0-444-59425-9.00007-X.

71. Mechie J., Kind R., Saul J., 2010. The seismological structure of the Tibetan Plateau crust and mantle down to 700 km depth. In: R. Gloaguen, L. Ratschbacher (Eds.), Growth and collapse of the Tibetan Plateau. Geological Society, London, Special Publication, vol. 353, p. 109–125. https://doi.org/10.1144/SP353.7.

72. Milanovsky E.E., 1976. Continental Rift Zones. Nedra, Moscow, 279 p. (in Russian) [Милановский Е.Е. Рифтовые зоны континентов. М.: Недра, 1976. 279 с.].

73. Minister J.B., Jordan T.H., 1978. Present-day plate motions. Journal of Geophysical Research: Solid Earth 83 (11), 5331-5354. https://doi.org/10.1029/JB083iB11p05331.

74. Mitrovica J., Mound J., Pysklywec R., Milne G., 2000. Sea-level change on a dynamic Earth. In: E. Boschi, G. Ekström, A. Morelli (Eds.), Problems in geophysics for the new millennium. Editrice Compositori, p. 499–529.

75. Molnar P., 2005. Mio-Pliocene growth of the Tibetan Plateau and evolution of East Asian climate. Paleontologia Electronica 8 (1), 2A.

76. Molnar P., Tapponnier P., 1975. Cenozoic tectonics of Asia: consequences and implications of a continental collision. Science 189 (4201), 419–426. https://doi.org/10.1126/science.189.4201.419.

77. Montelli R., Nolet G., Dahlen F.A., Masters G., Engdahl E.R., Hung S.H., 2004. Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303 (5656), 338–343. https://doi.org/10.1126/science.1092485.

78. Mordvinova V.V., Deschamps A., Dugarmaa T., Déverchère J., Ulziibat M., Sankov V.A., Artem’ev A.A., Perrot J., 2007. Velocity structure of the lithosphere on the 2003 Mongolian-Baikal transect from SV waves. Izvestiya, Physics of the Solid Earth 43(2), 119–129, https://doi.org/10.1134/S1069351307020036.

79. Morgan W., 1971. Convection plumes in the lower mantle. Nature 230 (5288), 42–43. https://doi.org/10.1038/230042a0.

80. Müller R.D., Sdrolias M., Gaina C., Roest W.R., 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems 9 (4), Q04006. https://doi.org/10.1029/2007GC001743.

81. Niu Y., Liu Y., Xue Q., Shao F., Chen S., Duan M., Guo P., Gong H., Hu Y., Hu Z., Kong J., Li J., Liu J., Sun P., Sun W., Ye L., Xiao Y., Zhang Y., 2015. Exotic origin of the Chinese continental shelf: new insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic. Science Bulletin 60 (18), 1598–1616. https://doi.org/10.1007/s11434-015-0891-z.

82. Niu Y., O’Hara M.J., Pearce J.A., 2003. Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: a petrological perspective. Journal of Petrology 44 (5), 851–866. https://doi.org/10.1093/petrology/44.5.851.

83. Otofuji Y-I., 1996. Large tectonic movement of the Japan Arc in Late Cenozoic times inferred from paleomagnetism: review and synthesis. The Island Arc 5 (3), 229–249. https://doi.org/10.1111/j.1440-1738.1996.tb00029.x.

84. Otofuji Y-I., Matsuda T., Itaya T., Shibata T., Matsumoto M., Yamamoto T., Morimoto C., Kulinich R.G., Zimin P.S., Matunin A.P., Sakhno V.G., Kimura K., 2003. Late Cretaceous to early Paleogene paleomagnetic results from Sikhote Alin, Far Eastern Russia: implications for deformation of East Asia. Earth and Planetary Science Letters 130 (1–4), 95–108. https://doi.org/10.1016/0012-821X(94)00254-V.

85. Owens T., Nyblade A., Gurrola H., Langston C., 2000. Mantle transition zone structure beneath Tanzania, East Africa. Geophysical Research Letters 27 (6), 827–830. https://doi.org/10.1029/1999GL005429.

86. Parfenov L.M., Berzin N.A., Khanchuk A.I., Badarch G., Belichenko V.G., Bulgatov A.N., Dril S.I., Kirillova G.L., Kuzmin M.I., Nokleberg W.J., Prokopyev A.V., Timofeev V.F., Tomurtogoo O., Yang H., 2003. A model for formation of orogenic belts in Central and Northeast Asia. Tikhookeanskaya geologiya (Russian Journal of Pacific Geology) 22 (6), 7–41 (in Russian) [Парфенов Л.М., Берзин Н.А., Ханчук А.И., Бадарч Г., Беличенко В.Г., Булгатов А.Н., Дриль С.И., Кириллова Г.Л., Кузьмин М.И., Ноклеберг У., Прокопьев А.В., Тимофеев В.Ф., Томуртогоо О., Янь Х. Модель формирования орогенных поясов Центральной и Северо-Восточной Азии // Тихоокеанская геология. 2003. Т. 22. № 6. С. 7–41].

87. Plate-Tectonic map of the Circum-Pacific region, 1984. Pacific basin sheet. Geological Survey, Tusla.

88. Qin H.F., Li Y.F., Huang S., Cai S.H., Ren S.M., 2013. Palaeomagnetic investigation of Permain sandstone in Taohaiyingzi area of Inner Mongolia and its tectonic significance. Geological Bulletin of China 32 (2-3), 388–398.

89. Rasskasov S.V., Chebykin E.P., Chuvashova I.S., Stepanova O.N., Vodneva E.N., 2014. Modern mantle activity in Central Asia inferred from U–Th-isotope systematics of Quaternary volcanic rocks: control of mantle melting by growing and thawing glaciers. Izvestiya Irkutskogo Gosudarstvennogo Universiteta. Seriya Nauki o Zemle 8, 91–101 (in Russian) [Рассказов С.В., Чебыкин Е.П., Чувашова И.С., Степанова О.Н., Воднева Е.Н. Современная активность мантии Центральной Азии по U–Th-изотопной систематике вулканических пород в ретроспективе 400 тыс. лет: контроль плавления мантии накоплением и стаиванием ледников // Известия Иркутского госуниверситета. Серия Науки о Земле. 2014. Т. 8. С. 91–101].

90. Rasskazov S.V., Chuvashova I.S., 2016. The latest geodynamics in Asia: Synthesis of data on volcanic evolution, lithosphere motion, and mantle velocities in the Baikal-Mongolian region. Geoscience Frontiers (in press). https://doi.org/10.1016/j.gsf.2016.06.009.

91. Rasskazov S.V., Logachev N.A., Kozhevnikov V.M., Yanovskaya T.B., 2003. Multistage dynamics of the upper mantle in Eastern Asia: relationships between wandering volcanism and low-velocity anomalies. Doklady Earth Sciences 390 (4), 492–496.

92. Rasskazov S.V., Logatchev N.A., Ivanov A.V., 1998. Correlation of Late Cenozoic tectono-magmatic events between the Baikal rift system and the Southeastern Eurasian plate. Geotectonics 32 (4), 272–285.

93. Rothacher M., Springer T.A., Schaer S., Beutler G., Brockmann E., 1996. Annual report 1966 of the CODE Analysis Center of the IGS, International GPS service for geodynamics 1996 annual report. California Institute of Technology, Pasadena, USA, p. 201–219.

94. Ruzhentsev S.V., Pospelov I.I., Badarch G., 1989. Tectonics of Indosinides in Mongolia. Geotektonika (Geotectonics) (6), 13–27 (in Russian) [Руженцев С.В., Поспелов И.И., Бадарч Г. Тектоника индосинид Монголии // Геотектоника. 1989. № 6. С. 13-27].

95. Sandwell D.T., Anderson D., Wessel P., 2005. Global tectonic maps. In: G.L. Foulger, J.H. Natland, D.C. Presnall, D.L. Anderson (Eds.), Plates, plumes and paradigms. Geological Society of America Special Papers, vol. 388, p. 1–10. https://doi.org/10.1130/0-8137-2388-4.1.

96. Sankov V.A., Parfeevets A.V., Lukhnev A.V., Miroshnichenko A.I., Ashurkov S.V., 2011. Late Cenozoic geodynamics and mechanical coupling of crustal and upper mantle deformations in the Mongolia-Siberia mobile area. Geotectonics 45 (5), 378–393. https://doi.org/10.1134/S0016852111050049.

97. Şengör A.M.C., Burke K., 1978. Relative timing of rifting and volcanism on earth and its tectonic implications. Geophysical Research Letters 5 (6), 419–421. https://doi.org/10.1029/GL005i006p00419.

98. Şengör A.M., Natal’in B.A., 1996. Paleotectonics of Asia: fragments of a synthesis. In: A. Yin, M. Harrison (Eds.), The tectonic evolution of Asia. Cambridge University Press, Cambridge, p.486–641.

99. Şengör A.M.C., Natal'in B.A., 2001. Rifts of the world. In: R.E. Ernst, K.L. Buchan (Eds.), Mantle plumes: their identification through time. Geological Society of America Special Papers, vol. 352, p. 389–482. https://doi.org/10.1130/0-8137-2352-3.389.

100. Shen Y., Solomon S., Bjarnason I., Wolfe C., 1998. Seismic evidence for a lower-mantle origin of the Iceland plume. Nature 395 (6697), 62–65. https://doi.org/10.1038/25714.

101. Simkin T., Tilling R.I., Taggart J.N., Jones W.J., Spall H., 1989. This dynamic planet: world map of volcanoes, earthquakes, and plate tectonics. Smithsonian Institution, US Geological Survey.

102. Smith A.D., Lewis C., 2003. The planet beyond the plume hypothesis. Earth-Science Reviews 48 (3), 135–182. https://doi.org/10.1016/S0012-8252(99)00049-5.

103. Stern R.J., 2004. Subduction initiation: spontaneous and induced. Earth and Planetary Science Letters 226 (3–4), 275–292. https://doi.org/10.1016/j.epsl.2004.08.007.

104. Tapponnier P., Peltzer G., Le Dain A.Y., Armijo R., 1982. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology 10 (12), 611–616. https://doi.org/10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2.

105. Tarduno J., Bunge H.P., Sleep N., Hansen U., 2009. The bent Hawaiian-Emperor hotspot track: Inheriting the mantle wind. Science 324 (5923), 50–53. https://doi.org/10.1126/science.1161256.

106. Tatsumi Y., Shinjoe H., Ishizuka H., Sager W.W., Klaus A., 1998. Geochemical evidence for a Mid-Cretaceous superplume. Geology 26 (2), 151–154. https://doi.org/10.1130/0091-7613(1998)026<0151:GEFAMC>2.3.CO;2.

107. Trabucho Alexandre J., Tuenter E., Henstra G.A., van der Zwan K.J., van de Wal R.S.W., Dijkstra H.A., de Boer P.L., 2010. The mid-Cretaceous North Atlantic nutrient trap: Black shales and OAEs. Paleoceanography 25 (4), PA4201. https://doi.org/10.1029/2010PA001925.

108. Tseden T., Murao S., Dorjgotov D., 1992. Introduction to geology of Mongolia. Bulletin of the Geological Survey of Japan 43 (12), 735–744.

109. Turcotte D.L., Emerman S.H., 1983. Mechanisms of active and passive rifting. Tectonophysics 94 (1–4), 39-50. https://doi.org/10.1016/0040-1951(83)90008-2.

110. Turcotte D.L., Schubert G., 2014. Geodynamics. Third edition. Cambridge University Press, Cambridge, 423 p.

111. Wan T., 2010. The Tectonics of China. Springer, Berlin, 501 p.

112. Wei W., Xu J., Zhao D., Shi Y., 2012. East Asia mantle tomography: New insight into plate subduction and intraplate volcanism. Journal of Asian Earth Sciences 60, 88–103. https://doi.org/10.1016/j.jseaes.2012.08.001.

113. Windley B.F., Alexeiev D., Xiao W., Kröner A., Badarch G., 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society 164 (1), 31–47. https://doi.org/10.1144/0016-76492006-022.

114. Wuming B., Vingy C., Ricard Y., Froidevaux C., 1992. On the origin of deviatoric stress in the lithosphere. Journal of Geophysical Research: Solid Earth 97 (B8), 11729–11737. https://doi.org/10.1029/91JB00292.

115. Xu X., Ma X., 1992. Geodynamics of the Shanxi Rift system, China. Tectonophysics 208 (1–3), 325–340. https://doi.org/10.1016/0040-1951(92)90353-8.

116. Xu Y.G., Huang X.L., Ma J.L., Wang Y.B., Iizuka Y., Xu J.F., Wang Q., Wu X.Y., 2004. Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton: constraints from SHRIMP zircon U–Pb chronology and geochemistry of Mesozoic plutons from western Shandong. Contributions to Mineralogy and Petrology 147 (6), 750–767. https://doi.org/10.1007/s00410-004-0594-y.

117. Yanovskaya T.B., Kozhevnikov V.M., 2003. 3D S-wave velocity pattern in the upper mantle beneath the continent of Asia from Rayleigh wave data. Physics of the Earth and Planetary Interiors 138 (3–4), 263–278. https://doi.org/10.1016/S0031-9201(03)00154-7.

118. Yanshin A.L. (Ed.), 1974. Tectonics of the Mongolian People's Republic. Nauka, Moscow, 283 p. (in Russian) [Тектоника Монгольской Народной Республики / Ред. А.Л. Яншин. М.: Наука, 1974. 283 с.]

119. Yarmolyuk V.V., Kudryashova E.A., Kozlovsky A.M., Savatenkov V.M., 2007. Late Cretaceous – Early Cenozoic volcanism of Southern Mongolia: A trace of the South Khangai mantle hot spot. Journal of Volcanology and Seismology 1 (1), 1–27. https://doi.org/10.1134/S0742046307010010.

120. Yoshioka S., Sanshadokoro H., 2002. Numerical simulations of deformation and dynamics of horizontally lying slab. Geophysical Journal International 151 (1), 69–82. https://doi.org/10.1046/j.1365-246X.2002.01735.x.

121. Zhang Y-S., Tanimoto T., 1992. Riges, hotspots and their interaction as observed in seismic velocity maps. Nature 355 (6355), 45–49. https://doi.org/10.1038/355045a0.

122. Zhao D., 2009. Multiscale seismic tomography and mantle dynamics. Gondwana Research 15 (3–4), 297–323. https://doi.org/10.1016/j.gr.2008.07.003.

123. Zhao D., Lei J., Inoue T., Yamada A., Gao S.S., 2006. Deep structure and origin of the Baikal rift zone. Earth and Planetary Science Letters 243 (3–4), 681–691. https://doi.org/10.1016/j.epsl.2006.01.033.

124. Zhou J.B., Wilde S.A., 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Research 23 (4), 1365–1377. https://doi.org/10.1016/j.gr.2012.05.012.

125. Zorin Y.A., 1971. Recent Structure and Isostasy of the Baikal Rift Zone and Adjacent Areas. Nauka, Moscow, 168 p. (in Russian) [Зорин Ю.А. Новейшая структура и изостазия Байкальской рифтовой зоны и сопредельных территорий. М.: Наука, 1971. 168 с.]

126. Zorin Y.A., 1999. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics 306 (1), 33–56. https://doi.org/10.1016/S0040-1951(99)00042-6.

127. Zorin Y.A., Turutanov E.K., Kozhevnikov V.M., Rasskazov S.V., Ivanov A.I., 2006. The nature of Cenozoic upper mantle plumes in East Siberia (Russia) and Central Mongolia. Geologiya i Geofizika (Russian Geology and Geophysics) 47 (10), 1056–1070.

128. Zorin Y.A., Turutanov E.Kh., Mordvinova V.V., Kozhevnikov V.M., Yanovskaya T.B., Treussov A.V., 2003. The Baikal rift zone: the effect of mantle plumes on older structure. Tectonophysics 371 (1–4), 153–173. https://doi.org/10.1016/S0040-1951(03)00214-2.


Для цитирования:


Чувашова И.С., Рассказов С.В., Йи-минь С. Новейшая геодинамика Центральной Азии: первичные и вторичные мантийные расплавные аномалии в контексте орогенеза, рифтогенеза и движения-взаимодействия литосферных плит. Геодинамика и тектонофизика. 2017;8(1):45-80. https://doi.org/10.5800/GT-2017-8-1-0232

For citation:


Chuvashova I.S., Rasskazov S.V., Yi-min S. The latest geodynamics in Central Asia: primary and secondary mantle melting anomalies in the context of orogenesis, rifting, and lithospheric plate motions and interactions. Geodynamics & Tectonophysics. 2017;8(1):45-80. (In Russ.) https://doi.org/10.5800/GT-2017-8-1-0232

Просмотров: 1020


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)