Preview

Geodynamics & Tectonophysics

Advanced search

ON SMALL TANGENTIAL MASS FORCES THAT MAY EXIST IN THE LITHOSPHERE. THEIR ROLE IN TECTONICS AND GEODYNAMICS

https://doi.org/10.5800/GT-2016-7-4-0229

Abstract

The author continues to investigate additional planetary-level stresses that occur in the crust due to distributed tangential mass forces. Such forces may be related to the daily rotation of the Earth and movements of the relatively solid core relative to the geocenter. In [Rebetskii, 2016], he discusses how the tangential mass forces in the continental crust are influencing additional meridional and latitudinal stresses and attempted to explain regularities of planetary fracturing. In this paper, he considers the role of the tangential mass forces in the occurrence of lateral movement of the lithospheric plates.

The author proposes to estimate amplitudes of the tangential mass forces from the difference between the two global ellipsoids of rotation. The reference ellipsoid averages the level surface of the gravity potential, and the second ellipsoid averages the physical surface of the Earth, separately considering continents and oceans. The Earth’s dynamic compression factor estimated from satellite data is 1/305.5. This value corresponds well to the average polar compression of the two rotation ellipsoids, which approximately describes the shape of the Earth’s physical surface. Thus, in the first approximation, the polar compression of the Earth’s physical surface is less than that of the reference ellipsoid (1/298.25) that approximately describes the shape of the level surface of gravity (i.e. geoid).

Gravity vectors deviate from the normal to the physical surface of the Earth by relatively small angles, according to calculations from the data on rotation ellipsoids (a maximum value of 16.4 at the 45° latitude). Tangential mass forces are thus small (2.15×10–4 G/cm3 at the 45° latitude). Due to small tangential forces, shear stresses about 0.3 MPa may occur at the base of the continental lithosphere (depths of 120–150 km). In their turn, such stresses can cause a shear flow in the asthenosphere, which provides for movements of the lithospheric plates at velocities of a few centimeters per year. The estimates in this study suggest that the tangential mass forces can be viewed as a possible source of the movements of the lithospheric plates.

Regional rotation ellipsoids, that average the physical surface of the continental and oceanic parts of the Earth, were estimated separately for the northern and southern hemispheres. The largest deviations of the ellipsoids from the reference ellipsoid were revealed for the oceanic parts of both hemispheres of the Earth. The regional ellipsoids for the oceanic parts show smaller polar compression (1/313.1 in the northern hemisphere, and 1/306.9 in the southern hemisphere) than that of the reference ellipsoid, and this predetermines the north-south orientation of the tangential mass forces from the poles to the equator. Compared to the reference ellipsoid, polar compression values estimated for the regional ellipsoids of the continental crust are larger (1/296.2) in the northern hemisphere and smaller (1/303.2) in the southern hemisphere. According to the calculations, the oceanic lithosphere makes the major contribution to submeridional movements of the continental plates.

About the Author

Yu. L. Rebetsky
O.Yu. Schmidt Institute of Physics of the Earth of RAS
Russian Federation

Rebetsky, Yuri L., Doctor of Physics and Mathematics, Head of Laboratory

10 Bol’shaya Gruzinskaya street, Moscow D-242 123242, GSP-5



References

1. Artyushkov E.V., 1979. Geodynamics. Nauka, Moscow, 327 p. (in Russian) [Артюшков Е.В. Геодинамика. М.: Наука, 1979. 327 с.].

2. Avsyuk Yu.N., 1993. Evolution of the Earth–Moon system, and its place among the problems of nonlinear geodynamics. Geotektonika (Geotectonics) (1), 13–22 (in Russian) [Авсюк Ю.Н. Эволюция системы Земля–Луна и ее место среди проблем нелинейной геодинамики // Геотектоника. 1993. № 1. С. 13–22].

3. Barkin Yu.V., 2005. Celestial mechanics of the Earth’s core and mantle: geodynamic and geophysical implications. In: Yu.V. Karyakin (Ed.), Tectonics of the Earth's crust and mantle. Tectonic regularities in distribution of mineral deposits. Vol. 1. GEOS, Moscow, p. 30–33 (in Russian) [Баркин Ю.В. Небесная механика ядра и мантии Земли: геодинамические и геофизические следствия // Тектоника земной коры и мантии. Тектонические закономерности размещения полезных ископаемых / Ред. Ю.В. Карякин. М.: ГЕОС, 2005. Т. 1. С. 30–33].

4. Bullen K.E., 1936. The variation of density and the ellipticities of strata of equal density within the Earth. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society 3 (9), 395–401. http://dx.doi.org/10.1111/j.1365-246X.1936.tb01747.x.

5. Bullen K.E., Haddon R.A.W., 1973. The ellipticities of surfaces of equal density inside the Earth. Physics of the Earth and Planetary Interiors 7 (2), 203–212. http://dx.doi.org/10.1016/0031-9201(73)90010-1.

6. Cox A., Hart R.B., 1986. Plate Tectonics: How It Works. Wiley-Blackwell, Boston, 418 p. [Русский перевод: Кокс А., Харт Р. Тектоника плит. М.: Мир, 1989. 427 с.].

7. Dobretsov N.L., 2010. Global geodynamic evolution of the Earth and global geodynamic models. Russian Geology and Geophysics 51 (6), 592–610. http://dx.doi.org/10.1016/j.rgg.2010.05.002.

8. Eötvös L., 1913. Verhandlungen der 17. Allgemeinen Konferenz der Internationalen Erdmessung. Teil I. Berlin, s. 111.

9. Epstein P.S., 1921. Über die Polflucht der Kontinente. Die Naturwissenschaften 9 (25), 499–502. http://dx.doi.org/10.1007/BF01494987.

10. Evernden J.F., 1997. What a=1/298 and C/Ma2=0.333 really tell us about the Earth. Izvestiya, Physics of the Solid Earth 33 (2), 162–170.

11. Grikurov G.E., Leichenkov G.L., Mikhalsky E.V., 2010. Tectonic Evolution of the Antarctic in the light of the current state of geodynamic ideas. In: Y.G. Leonov (Ed.), The structure and history of the lithosphere. Russia's contribution to the International Polar Year 2007/08. Paulsen, Moscow, p. 91–110 (in Russian) [Грикуров Г.Э., Лейченков Г.Л., Михальский Е.В. Тектоническая эволюция Антарктики в свете современного состояния геодинамических идей // Строение и история развития литосферы. Вклад России в Международный полярный год 2007/08 / Ю.Г. Ред. Леонов. М.: Paulsen, 2010. С. 91–110].

12. Jeans J.H., 1917. Gravitational instability and the figure of the Earth. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 93 (653), 413–417. http://dx.doi.org/10.1098/rspa.1917.0027.

13. Jeffreys H., 1952. The Earth: Its Origin, History and Physical Constitution. Third edition. Cambridge University Press, Cambridge, 574 p.

14. Lamb H., 1945. Hydrodynamics. 6th Edition. Dover Publications, New York, 768 p. [Русский перевод: Ламб Г. Гидродинамика. М.-Л.: ОГИЗ, 1947. 929 с.].

15. Leibenzon L.S., 1910. Deformation of the Elastic Sphere in Relation to the Problem of the Earth’s Structure. Scientific Notes of the Imperial Moscow University. Physics and Mathematics Department, vol. 27. Printing House of the Imperial Moscow University, Moscow, 125 p. (in Russian. ) [Лейбензон Л.С. Деформация упругой сферы в связи с вопросом о строении Земли. Ученые записки Императорского Московского университета, отдел физико-математический. Вып. 27. М.: Типография Императорского Московского университета, 1910. 125 с.].

16. Love A.E.H., 1909. The yielding of the Earth to disturbing forces. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 82 (551), 73–88. http://dx.doi.org/10.1098/rspa.1909.0008.

17. Love A.E.H., 1927. A Treatise on the Mathematical Theory of Elasticity. Fourth edition. Cambridge University Press, Cambridge, 643 p. [Русский перевод: Ляв А. Математическая теория упругости (перевод с 4-го английского издания). М.–Л.: ОНТИ НКТП СССР, 1935. 674 с.].

18. Molodensky M.S., 1945. Main Problems of Geodesic Gravimetry. Trudy TsNIIGAiK, vol. 42. Geodezizdat, Moscow, 111 p. (in Russian) [Молоденский М.С. Основные вопросы геодезической гравиметрии. Труды ЦНИИГАиК. Вып. 42. М.: Геодезиздат, 1945. 111 с.].

19. Molodensky M.S., 1948. The external gravitational field and the shape of the physical surface of the Earth. Izvestiya AN SSSR, Geography and Geophysics Series 12 (3), 193–211 (in Russian) [Молоденский М.С. Внешнее гравитационное поле и фигура физической поверхности Земли // Известия АН СССР, серия географическая и геофизическая. 1948. Т. 12. № 3. С. 193–211].

20. Molodensky M.S., 1989. The General Theory of Elastic Oscillations. Nedra, Moscow, 79 p. (in Russian) [Молоденский М.С. Общая теория упругих колебаний. М.: Недра, 1989. 79 с.].

21. Moritz H., 1980. Advanced Physical Geodesy. Herbert Wichmann Verlag, Karlsruhe, 500 p. [Русский перевод: Мориц Г. Современная физическая геодезия. М.: Недра, 1983. 391 с.].

22. Moritz H., 2001. Molodensky’s theory and GPS (Tribute to M.S. Molodensky). Geodeziya i Kartografiya (Geodesy and Cartography) (6), 7–17 (in Russian) [Мориц Г. Теория Молоденского и GPS (Памяти М.С. Молоденского) // Геодезия и картография. 2001. № 6. С. 7–17].

23. Morozov Yu.A., 2007. To the phenomenology of structures and processes of rotational genesis. In: E.E. Milanovsky (Ed.), Rotation processes in geology and physics. KomKniga, Moscow, p. 471–504 (in Russian) [Морозов Ю.А. К феноменологии структур и процессов ротационного генезиса // Ротационные процессы в геологии и физике / Ред. Е.Е. Милановский. М.: КомКнига, 2007. С. 471–504].

24. Papkovich P.F., 1939. The Theory of Elasticity. OBORONGIZ, Moscow, 640 p. (in Russian) [Папкович П.Ф. Теория упругости. М.: ОБОРОНГИЗ, 1939. 640 с.].

25. Rebetskii Y.L., 2009. Estimation of stress values in the method of cataclastic analysis of shear fractures. Doklady Earth Sciences 428 (1), 1202–1207. http://dx.doi.org/10.1134/S1028334X09070368.

26. Rebetskii Y.L., 2016. Estimation of the influence of daily rotation of the earth on the stress state of the continental crust. Doklady Earth Sciences 469 (1), 743–747. http://dx.doi.org/10.1134/S1028334X1607014X.

27. Rebetsky Y.L., 2015. On the specific state of crustal stresses in intracontinental orogens. Geodynamics & Tectonophysics 6 (4), 437–466 (in Russian) [Ребецкий Ю.Л. Об особенности напряженного состояния коры внутриконтинентальных орогенов // Геодинамика и тектонофизика. 2015. Т. 6. № 4. С. 437–466]. http://dx.doi.org/10.5800/GT-2015-6-4-0189.

28. Rebetsky Y.L., Kuchai O.A., Marinin A.V., 2013. Stress state and deformation of the Earth's crust in the Altai–Sayan mountain region. Russian Geology and Geophysics 54 (2), 206–222. http://dx.doi.org/10.1016/j.rgg.2013.01.011.

29. Rebetsky Y.L., Marinin A.V., 2006. Preseismic stress field before the Sumatra-Andaman earthquake of 26.12. 2004: a model of metastable state of rocks. Geologiya i Geofizika (Russian Geology and Geophysics) 47 (11), 1173–1185.

30. Schultz S.S. (Ed.), 1973. Planetary Fracturing. Leningrad State University, Leningrad, 176 p. (in Russian) [Планетарная трещиноватость / Ред. С.С. Шульц. Л.: Изд-во ЛГУ, 1973. 176 с.].

31. Schultz S.S., Nikolaeva T.V. (Eds.), 1976. Issues of Planetary Fracturing. The USSR Geographical Society, Leningrad, 103 p. (in Russian) [Вопросы изучения планетарной трещиноватости / Ред. С.С. Шульц, Т.В. Николаева. Л.: Географическое общество СССР, 1976. 103 с.].

32. Schweydar W., 1921. Bemerkungen zu Wegeners Hypothese der Verschiebung der Kontinente. Zeitschrift der Gesellschaft für Erdkunde zu Berlin 1921, 120–125.

33. Siddoway C.S., 2008. Tectonics of the West Antarctic rift system: new light on the history and dynamics of distributed intracontinental extension. In: A.K. Cooper, P.J. Barrett, H. Stagg, B. Storey, E. Stump, W. Wise (Eds.), Antarctica: A Keystone in a Changing World. Proceedings of the 10th International Symposium on Antarctic Earth Sciences. The National Academies Press, Washington, DC, p. 91–114.

34. Stacey F.D., 1969. Physics of the Earth. John Wiley and Sons, New York, 324 p. [Русский перевод: Стейси Ф. Физика Земли. М.: Мир, 1972. 342 с.].

35. Stovas M.V., 1975a. Selected Works. Nedra, Moscow, 155 p. (in Russian) [Стовас М.В. Избранные труды. М.: Недра, 1975. 155 с.].

36. Stovas M.V., 1975b. Some problems of planetary deep faulting in the Earth's crust. In: Selected works. Nedra, Moscow, p. 103–110 (in Russian) [Стовас М.В. Некоторые вопросы образования планетарных глубинных разломов в земной коре // Избранные труды. М.: Недра, 1975. С. 103–110].

37. Trubitsyn V.P., 2000. Principles of the tectonics of floating continents. Izvestiya Physics of the Solid Earth 36 (9), 708–741.

38. Wegener A., 1929. Die Entstehung der Kontinente und Ozeane. Friedr. Vieweg & Sohn Akt.-Ges., Braunschweig, 231 s. [Русский перевод: Вегенер А. Происхождение континентов и океанов. Л.: Наука, 1984. 285 с.].


Review

For citations:


Rebetsky Yu.L. ON SMALL TANGENTIAL MASS FORCES THAT MAY EXIST IN THE LITHOSPHERE. THEIR ROLE IN TECTONICS AND GEODYNAMICS. Geodynamics & Tectonophysics. 2016;7(4):691-704. (In Russ.) https://doi.org/10.5800/GT-2016-7-4-0229

Views: 1176


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)