MINERALOGICAL AND GEOCHEMICAL EVIDENCE FOR MULTI-STAGE FORMATION OF THE CHERTOVO KORYTO DEPOSIT
https://doi.org/10.5800/GT-2016-7-4-0227
Abstract
Introduction. The Lena gold province is one of the largest known gold resources in the world. The history of its exploration is long, but the genesis of gold mineralization hosted in black shales in the Bodaibo synclinorium still remains unclear. The studies face the challenge of discovering sources for the useful component and mechanisms of its redistribution and concentration. This study aims to clarify the time sequence of the ore mineralization in the Chertovo Koryto deposit on the basis of detailed mineralogical and geochemical characteristics of the ore, wallrock metasomatites and the Early Proterozoic host black shales, and to assess the applicability of the Sukhoi Log model for clarifying the Chertovo Koryto origin.
Geological setting. The Lena gold province is located in the junction area of the Siberian platform and the Baikal mountain region (Fig. 1). The main element of its geological structure is the Chuya-Tonoda-Nechera anticline. Its axial segment is marked by horsts composed of the Early Proterozoic rocks with abundant granitoid massifs. The Chertovo Koryto deposit is located within the Kevakta ore complex at the Tonoda uplift, the largest tectonically disturbed block between the Kevakta and Amandrak granitoids massifs. The 150 m thick and 1.5 km long ore zone of the Chertovo Koryto deposit is confined to the hanging wall of the fold-fault zone feathering the Amandrak deep fault (Fig. 2).
Composition. In the ore zone, rocks of the Mikhailovsk Formation include carbonaceous shales of the feldspar-chlorite-sericite-quartz composition with nest-shaped ore accumulations of the pyrite-quartz composition and quartz veinlets. In our study, we distinguish five mineral associations resulting from heterochronous processes that sequentially replaced each other:
- The earliest association related with the quartz-muscovite-sericite metasomatism and the removal of REE and other elements from the rocks and their partial redeposition;
- Metamorphic sulphidization presented by scattered impregnations of pyrrhotite, as evidenced by small lenses of pyrrhotite, which are considerably elongated (axes up to 0.7 cm long) along the foliation planes (Figs 3, a, b);
- Ore mineralization represented by a superimposed hydrothermal gold association with arsenopyrite (Fig. 3, d);
- Late chalcophilic mineralization formed at the final stage of hydrothermal-metasomatic process (Figs 3, e, f);
- Post-ore silification.
Geochemical characteristics. The geochemical study of rocks and ores from the Chertovo Koryto deposit show that the rocks of the Mikhailovsk Formation are characterized by higher contents of rock-forming elements, such as of Al2O3, Fe2O3total, MgO, K2O, and P2O5, in comparison to the PAAS standards [Condie, 1993] and the black shale standard composition (SChS-1) [Petrov et al., 2004]. A characteristic feature of the ore zone is that the contents of practically all the oxides, except SiO2, tend to decrease (Table 1). The distribution of rare elements repeats the pattern established for major elements. The least metamorphosed rocks of the Mikhailovsk Formation have higher contents (up to three times) of Cu, Mo, Ba, W, As, Pb relative to the values in the PAAS and SChS-1 standards. In the ore zone, the contents of almost all rare elements are considerably reduced (Table 2). The contents of elements in the siderophile group (Co, Ni) are clearly correlated with the ore processes and increased more than twice in the area of metamorphic changes. Samples with gold-ore grade contents show the highest concentrations of Co and Ni.
Conclusion. In our opinion, the Chertovo Koryto deposit was formed in five stages, the first two of which were pre-ore, with ore preparation, and probably considerably distant in time from the main ore-generating event. The staged formation of the Chertovo Koryto deposit correlates with the basic stages in the tectono-metamorphic history of the study region and is consistent with the model showing the formation of Sukhoi Log-type deposits [Nemerov, 1989; Buryak, Khmelevskaya, 1997; Large et al., 2007].
About the Authors
Yu. I. TarasovaRussian Federation
Tarasova, Yulia I., Candidate of Geology and Mineralogy
1A Favorsky street, Irkutsk 664033
О. T. Sotskaya
Russian Federation
Sotskaya, Olga T., Candidate of Geology and Mineralogy
6 Portovaya street, Magadan 685000
S. Yu. Skuzovatov
Russian Federation
Skuzovatov, Sergei Yu., Candidate of Geology and Mineralogy
1A Favorsky street, Irkutsk 664033
V. A. Vanin
Russian Federation
Vanin, Vadim A., Candidate of Geology and Mineralogy I
128 Lermontov street, Irkutsk 664033
Z. I. Kulikova
Russian Federation
Kulikova, Zoya I.
1A Favorsky street, Irkutsk 664033
A. E. Budyak
Russian Federation
Budyak, Aleksander E., Candidate of Geology and Mineralogy
1A Favorsky street, Irkutsk 664033
References
1. Buryak V.A., Khmelevskaya N.M., 1997. Sukhoi Log – One of the Largest Gold Deposits in the World (Genesis, Regularities in Placing Mineralization, and Forecasting Criteria). Dal'nauka, Vladivostok, 156 p. (in Russian) [Буряк В.А., Хмелевская Н.М. Сухой Лог – одно из крупнейших золоторудных месторождений мира (генезис, закономерности размещения оруденения, критерии прогнозирования). Владивосток: Дальнаука, 1997. 156 с.].
2. Chernyshev I.V., Chugaev A.V., Safonov Y.G., Saroyan M.R., Yudovskaya M.A., Eremina A.V., 2009. Lead isotopic composition from data of high-precession MC-ICP-MS and sources of matter in the large-scale Sukhoi Log noble metal deposit, Russia. Geology of Ore Deposits 51 (6), 496–504. http://dx.doi.org/10.1134/S1075701509060063.
3. Chugaev A.V., Chernyshov I.V., Safonov Y.G., Saroyan M.R., 2010. Lead isotopic characteristics of sulfides from large gold deposits of the Baikal-Patom Highland (Russia): Evidence from high-precision MC-ICP-MS isotopic analysis of lead. Doklady Earth Sciences 434 (2), 1366–1369. http://dx.doi.org/10.1134/S1028334X1010017X.
4. Chugaev A.V., Plotinskaya O.Y., Chernyshev I.V., Kotov A.A., 2014. Lead isotope heterogeneity in sulfides from different assemblages at the Verninskoe gold deposit (Baikal-Patom Highland, Russia). Doklady Earth Sciences 457 (1), 887–892. http://dx.doi.org/10.1134/S1028334X14070216.
5. Condie K.C., 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology 104 (1–4), 1–37. http://dx.doi.org/10.1016/0009-2541(93)90140-E.
6. Development of Criteria for Evaluating the Areas of Carbonaceous Sedimentary Formations for Forecasting of Non-Traditional Types of Deposits of Platinum Group Metals (Eastern Siberia), 1998. 1995–1998 Report on Topic 01423412709. Irkutsk (in Russian) [Разработка критериев оценки площадей развития углеродистых осадочных формаций для целей прогнозирования нетрадиционных типов месторождений платиноидов (Восточная Сибирь). Отчет по теме 01423412709 за 1995–1998 гг. Иркутск, 1998].
7. Distler V.V., Mitrofanov G.L., Nemerov V.K., Kovalenker V.A., Mokhov A.V., Semeikina L.K., Yudovskaya M.A., 1996. Modes of occurrence of the platinum group elements and their origin in the Sukhoi Log gold deposit (Russia). Geology of Ore Deposits 38 (6), 413–428.
8. Gammons C.H., Wood S.A., Li Y., 2002. Complexation of the rare earth elements with aqueous chloride at 200 °C and 300 °C and saturated water vapor pressure. In: R. Hellmann, S.A. Wood (Eds.), Water-rock interactions, ore deposits, and environmental geochemistry: a tribute to David A. Crerar. Geochemical Society Special Publication, vol. 7, p. 191–207.
9. Geological Report on Object GDP-0-50-I-II (Tonoda area), 2014. Irkutsk, 200 p. (in Russian) [Геологический отчет по объекту: ГДП-0-50-I-II (Тонодская площадь). Иркутск, 2014. 200 с.].
10. Gold Ore Deposit of Chertovo Koryto, 2007. 1996–2007 CJSC Tonoda Exploration Report. Estimated Reserves as of 01 September 2007. Bodaibo (in Russian) [Золоторудное месторождение Чертово Корыто. Отчет ЗАО «Тонода» о поисково-разведочных работах за 1996–2007 г.г. с подсчетом запасов по состоянию на 01.09.2007 г. Бодайбо, 2007].
11. Haas J.R., Shock E.L., Sassani D.C., 1995. Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochimica et Cosmochimica Acta 59 (21), 4329–4350. http://dx.doi.org/10.1016/0016-7037(95)00314-P.
12. Ivanov A.I., 2014. Gold of Baikal-Patom (Geology, Mineralization, and Prospects). Central Research Institute of Geological Prospecting for Basic and Precious Metals, Moscow, 215 p. (in Russian) [Иванов А.И. Золото Байкало-Патома (геология, оруденение, перспективы). М.: ЦНИГРИ, 2014. 215 с.].
13. Keppler H., 1993. Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks. Contributions to Mineralogy and Petrology 114 (4), 479–488. http://dx.doi.org/10.1007/BF00321752.
14. Kucherenko I.V., Gavrilov R.Yu., Martynenko V.G., Verkhozin A.V., 2008. Petrological and geochemical characteristics of the ore-bearing metasomatic aureole of the Chertovo Koryto gold deposit (Patom Highland). Bulletin of the Tomsk Polytechnical University 312 (1), 11–20 (in Russian) [Кучеренко И.В., Гаврилов Р.Ю., Мартыненко В.Г., Верхозин А.В. Петролого-геохимические черты рудовмещающего метасоматического ореола золоторудного месторождения Чертово Корыто (Патомское нагорье) // Известия Томского политехнического университета. 2008. Т. 312. № 1. С. 11–20].
15. Large R.R., Maslennikov V.V., Robert F., Danyushevsky L.V., Chang Z., 2007. Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province, Russia. Economic Geology 102 (7), 1233–1267. http://dx.doi.org/10.2113/gsecongeo.102.7.1233.
16. Larin A.M., Sal’nikova E.B., Kotov A.B., Makar’ev L.B., Yakovleva S.Z., Kovach V.P., 2006. Early Proterozoic syn-and postcollision granites in the northern part of the Baikal fold area. Stratigraphy and Geological Correlation 14 (5), 463–474. http://dx.doi.org/10.1134/S0869593806050017.
17. Laverov N.P., Chernyshev I.V., Chugaev A.V., Bairova E.D., Gol’tsman Y.V., Distler V.V., Yudovskaya M.A., 2007. Formation stages of the large-scale noble metal mineralization in the Sukhoi Log deposit, East Siberia: Results of isotope-geochronological study. Doklady Earth Sciences 415 (1), 810–814. http://dx.doi.org/10.1134/S1028334X07050339.
18. Linnen R.L., Samson I.M., Williams-Jones A.E., Chakhmouradian A.R., 2014. Geochemistry of the rare-earth element, Nb, Ta, Hf, and Zr depostits. In: H.D. Holland, K.K. Turekian (Eds.), Treatise on Geochemistry (Second Edition), vol. 13, Geochemistry of Mineral Deposits. Elsevier, Oxford, p. 543–568. http://dx.doi.org/10.1016/B978-0-08-095975-7.01124-4.
19. Meffre S., Large R.R., Scott R., Woodhead J., Chang Z., Gilbert S.E., Danyushevsky L.V., Maslennikov V., Hergt J.M., 2008. Age and pyrite Pb-isotopic composition of the giant Sukhoi Log sediment-hosted gold deposit, Russia. Geochimica et Cosmochimica Acta 72 (9), 2377–2391. http://dx.doi.org/10.1016/j.gca.2008.03.005.
20. Migdisov A.A., Williams-Jones A.E., 2008. A spectrophotometric study of Nd (III), Sm (III) and Er (III) complexation in sulfate-bearing solutions at elevated temperatures. Geochimica et Cosmochimica Acta 72 (21), 5291–5303. http://dx.doi.org/10.1016/j.gca.2008.08.002.
21. Migdisov A.A., Williams-Jones A.E., Wagner T., 2009. An experimental study of the solubility and speciation of the rare earth elements (III) in fluoride-and chloride-bearing aqueous solutions at temperatures up to 300 °C. Geochimica et Cosmochimica Acta 73 (23), 7087–7109. http://dx.doi.org/10.1016/j.gca.2009.08.023.
22. Nemerov V.K., 1989. Geochemical Specialization of the Late Cambrian Black Shales in the Baikal-Patom Highland. PhD Thesis (Candidate of Geology and Mineralogy). Irkutsk, 144 p. (in Russian) [Немеров В.К. Геохимическая специализация позднекембрийских черных сланцев Байкало-Патомского нагорья: Дис. … канд. геол.-мин. наук. Иркутск, 1989. 144 с.].
23. Nemerov V.K., Spiridonov A.M., Razvozzhaeva E.A., Matel’ N.L., Budyak A.E., Stanevich A.V., 2005. The main factors of ontogeny in noble metal deposits of Sukhoi Log type. Otechestvennaya Geologiya (Russian Geology) (3), 17–24 (in Russian) [Немеров В.К., Спиридонов А.М., Развозжаева Э.А., Матель Н.Л., Будяк А.Е., Станевич А.М. Основные факторы онтогенеза месторождений благородных металлов Сухоложского типа // Отечественная геология. 2005. № 3. С. 17–24].
24. Palenova E.E., 2015. Mineralogy of the Kopylovskoe, Caucasus, and Krasnoe Gold Deposits (Artemovsky Ore Complex, Bodaibo District). PhD Thesis (Candidate of Geology and Mineralogy). Miass, 202 p. (in Russian) [Паленова E.E. Минералогия месторождений золота Копыловское, Кавказ, Красное (Артемовский рудный узел, Бодайбинский район): Дис. … канд. геол.-мин. наук. Миасс, 2015. 202 с.].
25. Perevalov O.V., Sryvtsev N.A., 2013. Geological Structure and Minerageny of the Bodaibo and Mama Mining Regions. GEOMAP, GEOS, Moscow, 276 p. (in Russian) [Перевалов О.В., Срывцев Н.А. Геологическое строение и минерагения Бодайбинского и Мамского горнорудных районов. М.: ГЕОКАРТ, ГЕОС, 2013. 276 с.].
26. Petrov L.L., Kornakov Yu.N., Korotaeva I.Ia, Anchutina E.A., Persikova L.A., Susloparova V.E., Fedorova I.N., Shibanov V.A., 2004. Multi-element reference samples of black shale. Geostandards and Geoanalytical Research 28 (1), 89–102. http://dx.doi.org/10.1111/j.1751-908X.2004.tb01045.x.
27. Tsygankov A.A., Litvinovsky B.A., Jahn B.M., Reichow M.K., Liu D.Y., Larionov A.N., Presnyakov S.L., Lepekhina Ye.N., Sergeev S.A., 2010. Sequence of magmatic events in the Late Paleozoic of Transbaikalia, Russia (U-Pb isotope data). Russian Geology and Geophysics 51 (9), 972–994. http://dx.doi.org/10.1016/j.rgg.2010.08.007.
28. Tsygankov A.A., Matukov D.I., Berezhnaya N.G., Larionov A.N., Posokhov V.F., Tsyrenov B.T., Khromov A.A., Sergeev S.A., 2007. Late Paleozoic granitoids of western Transbaikalia: magma sources and stages of formation. Russian Geology and Geophysics 48 (1), 120–140. http://dx.doi.org/10.1016/j.rgg.2006.12.011.
29. Vagina E.A., 2012. Ores mineral complexes and GENESIS OF Chertovo Koryto gold deposit (Patom Highland). Bulletin of the Tomsk Polytechnical University 321 (1), 63–69 (in Russian) [Вагина Е.А. Минеральные комплексы руд и генезис золоторудного месторождения Чертово Корыто (Патомское нагорье) // Известия Томского политехнического университета. 2012. Т. 321. № 1. С. 63-69].
30. Wood S.A., 2005. The aqueous geochemistry of zirconium, hafnium, niobium and tantalum. In: R.L. Linnen, I.M. Samson (Eds.), Rare-element geochemistry and mineral deposits. Geological Association of Canada Short Course Notes, vol. 17, p. 217–268.
31. Wood S.A., Williams-Jones A.E., 1994. The aqueous geochemistry of the rare-earth elements and yttrium 4. Monazite solubility and REE mobility in exhalative massive sulfide-depositing environments. Chemical Geology 115 (1–2), 47–60. http://dx.doi.org/10.1016/0009-2541(94)90144-9.
32. Yudovskaya M.A., Distler V.V., Prokofiev V.Y., Akinfiev N.N., 2016. Gold mineralisation and orogenic metamorphism in the Lena province of Siberia as assessed from Chertovo Koryto and Sukhoi Log deposits. Geoscience Frontiers 7 (3), 453–481. http://dx.doi.org/10.1016/j.gsf.2015.07.010.
33. Yudovskaya M.A., Distler V.V., Rodionov N.V., Mokhov A.V., Antonov A.V., Sergeev S.A., 2011. Relationship between metamorphism and ore formation at the Sukhoi Log gold deposit hosted in black slates from the data of U-Th-Pb isotopic SHRIMP-dating of accessory minerals. Geology of Ore Deposits 53 (1), 27–57. http://dx.doi.org/10.1134/S1075701511010077.
34. Zorin Y.A., Mazukabzov A.M., Gladkochub D.P., Donskaya T.V., Presnyakov S.L., Sergeev S.A., 2008. Silurian age of major folding in Riphean deposits of the Baikal-patom zone. Doklady Earth Sciences 423 (1), 1235–1239. http://dx.doi.org/10.1134/S1028334X08080114.
Review
For citations:
Tarasova Yu.I., Sotskaya О.T., Skuzovatov S.Yu., Vanin V.A., Kulikova Z.I., Budyak A.E. MINERALOGICAL AND GEOCHEMICAL EVIDENCE FOR MULTI-STAGE FORMATION OF THE CHERTOVO KORYTO DEPOSIT. Geodynamics & Tectonophysics. 2016;7(4):663-677. https://doi.org/10.5800/GT-2016-7-4-0227