Preview

Geodynamics & Tectonophysics

Advanced search

SPHERICAL MICROPARTICLES FROM GOLD–BEARING QUARTZ VEINS OF THE IROKINDA DEPOSIT, WESTERN TRANSBAIKALIA

https://doi.org/10.5800/GT-2016-7-4-0226

Abstract

We have studied the material composition of ore microparticles extracted from gold concentrates of operating quartz vein No. 30 located in the Irokinda deposit, Western Transbaikalia. We consider the origin of such microparticles in connection with our observation data and the previously published structural and geological features revealed in formation of the ore field, as well as tectonophysical conditions of formation of many gold-bearing quartz veins, including vein No. 30.

Gold-quartz veins, located in the allochthonous plate thrusted onto the Kelyano-Irokinda belt (Fig. 1), infill the NE-striking fault zones. E.A. Namolov conducted the tectonophysical analysis of the “elementary fracture – ore-bearing suture/joint” system, which provided a genetic explanation of the morphology of ore quartz veins (including vein No. 30) and conditions for formation of their host fault zones. Ore-bearing fractures are combinations of shear and cleavage cracks that occur in case of certain positions of the strain ellipsoid in conditions of horizontal compression. Due to repeated intra-mineralization displacements, the texture of the ores is strappy, and the quartz matrix of the veins contains numerous inclusions of host rocks.

The spherical particles have zonal structures and consist of metal nodes and external continuous or discontinuous shells, which thickness ranges from 10 to 400 microns (Fig. 2, Fig. 3). The nodes are composed mainly of native Fe with admixtures of Fe, Mn, Al (Table), the contents of which are typically less than 1.0–1.5 wt %.

Characteristic features of the mineral composition of shells of the spheroidal microparticles:

– The widespread graphite matrix consisting of minerals of different classes, except for native;

– Pyrite in the group of ore oxides of Fe, Mn, Cr, Ti;

– A large group of carbonate minerals;

– Feldspars and natrosilite among silicates;

– The mineral with CaBr2 composition;

– Mono-mineral quartz rims.

The consequence of metamorphism, i.e. deformational or mechano-chemical transformations of rocks in Irokinda, as well as the autochthon (the rock bed of the Kelyano-Irokinda belt), is the gas-water (‘hydrothermal’) system capable of forming the spherical ore particles with low-temperature mineral rims.

The main feature of the structure of the spherical microparticles in Irokinda is a sharp contrast of the crystallization conditions of the metal nodes and their rims. Similar conditions leading to formation of contrasting mineral associations, that are similar in compositions to the discussed spherules, are characteristic of the gas-water-lithoclastitic and gas-water stages of mud volcanoes. For these stages, we suggest the cavitation mechanism of formation of spherical metal particles of Fe, Fe–Cr and other compositions, which is accompanied by combustion (pyrogenic melt) and pyrolysis of hydrocarbon components of the fluid. This mechanism, with the exception of the origin of the melt (in this case, of the friction type) seems to most closely correspond to the actual data.  The spheroids are likely to have formed in the pre-ore stage of formation of the quartz veins.

The high-temperature metal spherical microparticles revealed in our study can be regarded as specific indicators showing conditions in which the ore-forming system of the dynamo-metamorphic type was functioning to produce gold mineralization on the Irokinda deposit. The structure and composition of these microparticles differ from those of the microspherules from other gold deposits in Transbaikalia (black shale formation in Sukhoi Log, and low–sulphide gold–quartz ore formation in Pervenets), which also belong to the dynamogenic genetic type. However, the ore-forming systems of the compared deposits have two common factors that contribute to formation of spherical microparticles – high tectonic activity manifested by repeated (impulse-type) tectonic movements, and the associated unstable pressure conditions. The consequence of the latter is heterogenization of the gas-water fluid, which, in turn, leads to the cavitation and froth flotation mechanisms.

About the Authors

A. V. Tatarinov
Geological Institute, Siberian Branch of RAS
Russian Federation

Tatarinov, Aleksander V., Doctor of Geology and Mineralogy, Chief Researcher

6a Sakhyanova street, Ulan-Ude 670047



L. I. Yalovik
Geological Institute, Siberian Branch of RAS
Russian Federation

Yalovik, Lyubov I., Candidate of Geology and Mineralogy, Senior Researcher 

6a Sakhyanova street, Ulan-Ude 670047



V. A. Vanin
Institute of the Earth’s Crust, Siberian Branch of RAS
Russian Federation

Vanin, Vadim A., Candidate of Geology and Mineralogy

128 Lermontov street, Irkutsk 664033



References

1. Adushkin V.V., Andreev S.N., Popel S.I., 2006. Formation of nano-and microspherules of minerals in ore deposits depending on depth of host rock occurrence. Geology of Ore Deposits 48 (3), 237–243. http://dx.doi.org/10.1134/S1075701506030056.

2. Bulgatov A.N., 2015. Geodynamics of the Baikal mountainous region in the Late Riphean and Vendian – Early Paleozoic. Geo, Novosibirsk, 191 p. (in Russian) [Булгатов А.Н. Геодинамика Байкальской горной области в позднем рифее и венде – раннем палеозое. Новосибирск: “Гео”, 2015. 191 с.].

3. Chersky N.V., Soroko T.I., 1988. The influence of tectonoseismic processes of the fossil organic matter and oil generation. Geologiya i Geofizika (Russian Geology and Geophysics) (9), 54–62(in Russian) [Черский Н.В., Сороко Т.И. Влияние тектоносейсмических процессов на ископаемое органическое вещество и генерацию нефти // Геология и геофизика. 1988. № 9. С. 54–62].

4. Chersky N.V., Tsarev B.P., 1984. The mechanism of the synthesis of hydrocarbons from inorganic compounds in the upper layers of the crust. Doklady AN SSSR 279 (3), 730–735(in Russian) [Черский Н.В., Царев Б.П. Механизм синтеза углеводородов из неорганических соединений в верхних горизонтах земной коры // Доклады АН СССР. 1984. Т. 279. № 3. С. 730–735].

5. Grebennikov A.V., Shcheka S.A., Karabtsov A.A., 2012. Silicate-metallic spherules and the problem of the ignimbrite eruption mechanism: The Yakutinskaya volcanic depression. Journal of Volcanology and Seismology 6 (4), 211–229. http://dx.doi.org/10.1134/S0742046312040021.

6. Konnikov E.G., Mironov A.G., Tsygankov A.A., Posokhov V.F., Vrublevskaya T.T., Kulikov A.A., Kulikova A.B., 1995. Genesis of plutonogenic gold mineralization in the Late Precambrian, Sayan-Baikal folded area. Geologiya i Geofizika (Russian Geology and Geophysics) 36 (4), 37–52 (in Russian) [Конников Э.Г., Миронов А.Г., Цыганков А.А., Посо-хов В.Ф., Врублевская Т.Т., Куликов А.А., Куликова А.Б. Генезис плутоногенного золотого оруденения в позднем докембрии Саяно-Байкальской складчатой области // Геология и геофизика. 1995. Т. 36. № 4. С. 37–52].

7. Kucherenko I.V., 1989. The Late Paleozoic era of gold mineralization in the Precambrian frame of the Siberian platform. Izvestiya AN SSSR, Seriya Geologicheskaya (6), 90–101 (in Russian) [Кучеренко И.В. Позднепалеозойская эпоха золотого оруденения в докембрийском обрамлении Сибирской платформы // Известия АН СССР, серия геологическая. 1989. № 6. С. 90–101].

8. Kucherenko I.V., Larskaya E.S., Pankina R.G., Sukhova A.N., Chetverikova O.P., Pentina T.Yu., Korolev Yu.M., 1990. Distribution and sources of carbon in the near-ore metasomatic halos of terrigenous shale strata in the Baikal-Vitim geosynclinals-folded system. Geokhimiya (Geochemistry) (6), 797–806 (in Russian) [Кучеренко И.В., Ларская Е.С., Панкина Р.Г., Сухова А.Н., Четверикова О.П., Пентина Т.Ю., Королев Ю.М. Распределение и источники углерода в околорудных метасоматических ореолах терригенно-сланцевых толщ Байкало-Витимской геосинклинально-складчатой системы // Геохимия. 1990. № 6. С. 797–806].

9. Lyakhov Yu.V., 1980. Paleotemperature zoning of ore fields. In: V.G. Moiseenko (Ed.), Thermobarogeochemistry and ore genesis. Proceedings of the 6th All–Union Conference on Thermobarogeochemistry. Far Eastern Scientific Center of the USSR Academy of Sciences, Vladivostok, P. 20–30 (in Russian) [Ляхов Ю.В. Палеотемпературная зональность рудных полей // Термобарогеохимия и рудогенез: Материалы VI Всесоюзного совещания по термобарогеохимии / Ред. В.Г. Моисеенко. Владивосток: ДВНЦ АН СССР, 1980. С. 20–30].

10. Mineeva I.G., Arkhangelskaya V.V., 2007. A new trend in the methodology of the discovery of uranium and gold-uranium deposits in shields and the Precambrian folded regions. Razvedka i okhrana nedr (Exploration and Conservation of Mineral Resources) (11), 18–25 (in Russian) [Минеева И.Г., Архангельская В.В. Новое направление в методологии выявления урановых и золотоурановых месторождений на щитах и в докембрийских складчатых областях // Разведка и охрана недр. 2007. № 11. С. 18–25].

11. Namolov E.A., 1979a. Tectonic conditions of formation and regularities of ore-bearing fractures in the Irokinda ore field. In: Ts.O. Ochirov (Ed.), Tectonic structures and regularities of minerals distribution in the territory of Transbaikalia. Publishing House of the Buryatian Branch, SB of the USSR Acad. Sci., Ulan-Ude, p. 70–79 (in Russian) [Намолов Е.А. Тектонические условия формирования и закономерности морфологии рудовмещающих разрывов Ирокиндинского рудного поля // Тектонические структуры и закономерности размещения полезных ископаемых на территории Забайкалья / Ред. Ц.О Очиров. Улан-Удэ: Изд-во Бурятского филиала СО АН СССР, 1979. С. 70–79].

12. Namolov E.A., 1979b. The Evolution of the Structure and Endogenous Zoning of Mineralization in the Irokinda Gold Field. Thesis (Candidate of Geology and Mineralogy). Irkutsk, 150 p. (in Russian) [Намолов Е.А. Эволюция структуры и эндогенная зональность минерализации Ирокиндинского золоторудного поля: Дис. … канд. геол.-мин. наук. Иркутск, 1979. 150 с.].

13. Namolov E.A., 1987. Structural, mineralogical and geochemical criteria for evaluating gold-quartz veins (the case of an ore field in Buryatia). In: Gold mineralization south of Eastern Siberia. SNIIGGiMS, Novosibirsk–Irkutsk, p. 71–80 (in Russian) [Намолов Е.А. Структурные и минералого-геохимические критерии оценки золотокварцевых жил (на примере одного из рудных полей Бурятии) // Золотоносность юга Восточной Сибири. Новосибирск–Иркутск: СНИИГГиМС, 1987. С. 71–80].

14. Novgorodova M.I., Gamyanin G.N., Zhdanov Y.Y., Agakhanov A.A., Dikaya T.V., 2003. Microspherules of aluminosilicate glass in gold ores. Geochemistry International 41 (1), 76–85.

15. Novgorodova M.I., Gamyanin G.N., Zhdanov Y.Y., Agakhanov A.A., Dikaya T.V., 2004. Microspherules of native gold, sulfides, and sulfosalts in gold ores. Geochemistry International 42 (2), 122–133.

16. Ostapenko N.S., 2016. About the natural flotation of hydrophobic minerals in the hydrothermal mineralization and its consequences (cases of gold deposits). Rudy i Metally (Ores and Metals) (1), 78–86 (in Russian) [Остапенко Н.С. О естественной флотации гидрофобных минералов в гидротермальном рудообразовании и ее следствиях (на примере месторождений золота) // Руды и металлы. 2016. № 1. С. 78–86].

17. Ovchinnikov L.N., 1988. The Formation of Ore Deposits. Nedra, Moscow, 255 p. (in Russian) [Овчинников Л.Н. Образование рудных месторождений. М.: Недра, 1988. 255 с.].

18. Tatarinov A.V., Yalovik L.I., 2014. Placer-forming Cenozoic mud-volcano genetic type of gold mineralization in the Lena Area, Patom Highland, Russia. Global Journal of Earth Science and Engineering 1 (1), 24–33. http://dx.doi.org/10.15377/2409-5710.2014.01.01.3.

19. Tatarinov A.V., Yalovik L.I., Kanakin S.V., 2016. The generation and mineral associations of rock assemblages at mud volcanoes: Southeastern Siberia. Journal of Volcanology and Seismology 10 (4), 248–262. http://dx.doi.org/10.1134/S0742046316030052.

20. Tatarinov A.V., Yalovik L.I., Posokhov V.F., 2014. Features of formation of the Irba deposit of precious metals (Western Transbaikalia). Geology and Mineral Resources of Siberia 3 (1), 117–119 (in Russian) [Татаринов А.В., Яловик Л.И., Посохов В.Ф. Особенности формирования Ирбинского месторождения благородных металлов (Западное Забайкалье) // Геология и минерально-сырьевые ресурсы Сибири. 2014. № 3. Ч. 1. С. 117–119].

21. Tat’kov I.G., Tat’kov G.I., Baderin I.M., Kovbasov K.V., 2014. Electric tomography results in the search for gold ore in conditions of cryolatogenesis and the Alpine-type relief of Northern Pribaikalie. Razvedka i okhrana nedr (Exploration and Conservation of Mineral Resources) (1), 32–38 (in Russian) [Татьков И.Г., Татьков Г.И., Бадерин И.М., Ковбасов К.В. Результаты электротомографии при поисках рудного золота в условиях криолатогенеза и альпинотипного рельефа Северного Прибайкалья // Разведка и охрана недр. 2014. № 1. С. 32–38].

22. Yalovik L.I., Shelkovnikova N.A., Tatarinov A.V., 2011. Complex ores of the Jubilee ore field (Muya gold ore region). In: E.V. Kislov (Ed.), Minerageny of the Northeast Asia. Materials of the 2nd All-Russia scientific-practical conference. Ekos, Ulan-Ude, p. 194–196 (in Russian) [Яловик Л.И., Шелковникова Н.А., Татаринов А.В. Комплексные руды Юбилейного рудного поля (Муйский золоторудный район) // Минерагения Северо-Восточной Азии: Материалы II Всероссийской научно-практической конференции / Ред. Е.В. Кислов. Улан-Удэ: «Экос», 2011. С. 194–196].

23. Yatsenko A.S., 1995. Structural zonation of mineralization as exploration search criterion of the Irokinda gold deposit (Mid-Vitim highland). Izvestia VUZov. Geologiya i Razvedka (Geology and Exploration) (4), 73–79 (in Russian) [Яценко А.С. Структурная зональность оруденения как поисковый критерий на месторождении золота Ирокинда (Средне-Витимская горная страна) // Известия ВУЗов. Геология и разведка. 1995. № 4. С. 73–79].

24. Yatsenko A.S., 1998. The influence of the intra-ore tectonics on the distribution of gold in the flat-lying quartz veins of the Irokinda deposit. Izvestiya VUZov. Geologiya i Razvedka (Geology and Exploration) (4), 65–70 (in Russian) [Яценко А.С. Влияние внутрирудной тектоники на распределение золота в пологозалегающих кварцевых жилах месторождения Ирокинда // Известия ВУЗов. Геология и разведка. 1998. № 4. С. 65–70].


Review

For citations:


Tatarinov A.V., Yalovik L.I., Vanin V.A. SPHERICAL MICROPARTICLES FROM GOLD–BEARING QUARTZ VEINS OF THE IROKINDA DEPOSIT, WESTERN TRANSBAIKALIA. Geodynamics & Tectonophysics. 2016;7(4):651-662. (In Russ.) https://doi.org/10.5800/GT-2016-7-4-0226

Views: 1212


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)