THE COMPOSITION AND RECONSTRUCTION OF THE SOURCE AREA FOR THE LATE PRECAMBRIAN TERRIGENOUS ROCKS OF THE OSELKOVAYA SERIES (BIRYUSA PRISAYANIE)
https://doi.org/10.5800/GT-2016-7-4-0225
Abstract
We present results from petrographic and lithogeochemical studies of the Late Precambrian terrigenous rocks (sandstones, gravelites, and aleuritic sandstones) from the Oselkovaya series of Prisayanie. The studies were conducted to reconstruct the primary composition of the rocks in the source area. It has been found that the rocks in the lower part of the cross-section of this series (Marninskaya suite, and the lower part of the Udinskaya suites) are represented by more coarse-grained terrigenous rocks (gravelites, and sandstones) as compared to the upper part of the cross-section (the upper part of the Udinskaya suite, and the Aisinskaya suite) with sandstones and aleuritic sandstones. Gravelites and sandstones from the lower part of the Oselkovaya series show indicators of epigenetic changes that are less intensively expressed in the rocks from the upper part of the cross-section. The upper and lower parts of the Oselkovaya series are significantly different in terms of lithogeochemistry. The lower rocks show quite low contents of Na2O and ratios K2O/Na2O ranging between 10 and 75. In the terrigenous sediments of the upper part, values of K2O/Na2O do not exceed 1–2. Sandstones and gravelites in the lower part of the Oselkovaya series are characterized by reduced concentrations of radioactive, rare-earth, and highly charged elements, as well as lower concentrations of Ni and Co relative to concentrations of these elements in sandstones and aleuritic sandstones of the Oselkovaya series. The petrographic and lithogeochemical characteristics of the terrigenous sediments of the lower and upper parts of the Oselkovaya series suggest different sources of the denudation of these rocks into the sedimentation basin. It is suggested that acid rocks were the denudation source of the terrigenous rocks in the lower part of the series, and the sandstones and aleuritic sandstones in the upper part of the series were sourced from rocks of a mixed (acid–base) composition. The composition of the rocks in the source area was reconstructed, and the published ages of detrital zircons from the sandstones of the upper and lower parts of the Oselkovaya series were taken into account. The reconstruction suggests that the lower part of the Oselkovaya series resulted from the destruction of the basement rocks in the Siberian craton. The upper part of the Oselkovaya series seems to have formed in the basin, wherein the denudation took place from the orogen formed as a result of the accretion of micro-continents and island arcs of the Paleo-Asian Ocean to the south-western margin of the Siberian craton.
About the Authors
Z. L. MotovaRussian Federation
Motova, Zinaida L., Post Graduate Student, Junior Researcher
128 Lermontov street, Irkutsk 664033
T. V. Donskaya
Russian Federation
Donskaya, Tatiana V., Candidate of Geology and Mineralogy, Lead Researcher
128 Lermontov street, Irkutsk 664033
D. P. Gladkochub
Russian Federation
Gladkochub, Dmitry P., Doctor of Geology and Mineralogy, Corresponding Member of RAS, Professor of RAS, Director of the Institute
128 Lermontov street, Irkutsk 664033
References
1. Boynton W.V., 1984. Cosmochemistry of the rare earth elements; meteorite studies. In: P. Henderson (Ed.), Rare earth element geochemistry. Developments in Geochemistry. Vol. 2. Elsevier, Amsterdam, p. 63–114. http://dx.doi.org/10.1016/B978-0-444-42148-7.50008-3.
2. Bragin S.S., 1985. The use of paleomagnetic data for solution of some problems of the Late Riphean geology of Prisayanie. In: V.V. Khomentovsky (Ed.), Stratigraphy of Late Precambrian and Early Paleozoic Siberia: Vendian and Riphean. IGG SB, USSR Acad. Sci., Novosibirsk, p. 57–64 (in Russian) [Брагин С.С. Использование палеомагнитных данных для решения некоторых вопросов геологии позднего рифея Присаянья // Стратиграфия позднего докембрия и раннего палеозоя Сибири: венд и рифей / Ред. В.В. Хоментовский. Новосибирск: ИГиГ СО АН СССР, 1985. С. 57–64].
3. Condie K.C., 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology 104 (1–4), 1–37. http://dx.doi.org/10.1016/0009-2541(93)90140-E.
4. Cullers R.L., 2002. Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chemical Geology 191 (4), 305–327. http://dx.doi.org/10.1016/S0009-2541(02)00133-X.
5. Decisions of the All-Union Stratigraphic Meeting on Precambrian, Paleozoic and Quaternary System of Central Siberia. Part 1. Novosibirsk, 1983. 214 p. (in Russian) [Решения всесоюзного стратиграфического совещания по докембрию, палеозою и четвертичной системе Средней Сибири. Ч. 1. Новосибирск, 1983. 214 с.].
6. Dickinson W.R., Beard L.S., Brackenridge G.R., Erjavec J.L., Ferguson R.C., Inman K.F., Knepp R.A., Lindberg F.A., Ryberg P.T., 1983. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin 94 (2), 222–235. http://dx.doi.org/10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2.
7. Dolnik T.A., 2000. Stromatolites and Microphytolites in Stratigraphy of the Riphean and Vendian Folded Frame of the Southern Part of the Siberian Platform. GEO Publishing House of SB RAS, Novosibirsk, 320 p. (in Russian) [Дольник Т.А. Строматолиты и микрофитолиты в стратиграфии рифея и венда складчатого обрамления юга Сибирской платформы. Новосибирск: Изд-во СО РАН, филиал «Гео», 2000. 320 с.].
8. Dolnik T.A., Vorontsov G.A., 1972. New data on the age of sediments of the Karagass series in Prisayanie. Doklady AN SSSR 204 (2), 426–429 (in Russian) [Дольник Т.А., Воронцова Г.А. Новые данные о возрасте отложений карагасской серии Присаянья // Доклады АН СССР. 1972. Т. 204. № 2. С. 426–429].
9. Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., Motova Z.L., Lvov P.A., 2016. The new Early Proterozoic Sayano-Biryusa volcano-plutonic belt in the southern part of the Siberian craton. In: Geodynamic evolution of the lithosphere of the Central Asian mobile belt (from ocean to continent). Issue 14. IEC SB RAS, Irkutsk, p. 82–84 (in Russian) [Донская Т.В., Гладкочуб Д.П., Мазукабзов А.М., Мотова З.Л., Львов П.А. Новый Саяно–Бирюсинский раннепротерозойский вулканоплутонический пояс в южной части Сибирского кратона // Геодинамическая эволюция литосферы Центрально–Азиатского подвижного пояса (от океана к континенту). Вып. 14. Иркутск: ИЗК СО РАН, 2016. С. 82–84].
10. Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., Wingate M.T.D., 2014. Early Proterozoic postcollisional granitoids of the Biryusa block of the Siberian craton. Russian Geology and Geophysics 55 (7), 812–823. http://dx.doi.org/10.1016/j.rgg.2014.06.002.
11. Fedo C.M., Nesbitt H.W., Young G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23 (10), 921–924. http://dx.doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2.
12. Galimova T.F., Pashkov A.G., Povarintseva S.A., Perfil'ev V.V., Namolova M.M., Andryushchenko S.V., Denisenko E.P., Permyakov S.A., 2011. The State Geological Map of the Russian Federation. Scale 1: 1000000 (Series 3). Angara–Yenisei Series. Sheet N–47 – Nizhneudinsk. VSEGEI Cartographic Factory, St. Petersburg, 301 p. (in Russian) [Галимова Т.Ф., Пашкова А.Г., Поваринцева С.А., Перфильев В.В., Намолова М.М., Андрющенко С.В., Денисенко Е.П., Пермяков С.А. Государственная геологическая карта Российской Федерации. Масштаб 1:1000000 (третье поколение). Серия Ангаро-Енисейская. Лист N–47 – Нижнеудинск. СПб.: Картографическая фабрика ВСЕГЕИ, 2011. 301 с.].
13. Khomentovskii V.V., 2002. Baikalian in Siberia. Geologiya i Geofizika (Russian Geology and Geophysics) 43 (4), 313–333.
14. Kopeliovich A.V., 1965. Epigenesis of Ancient Rock Beds of the Southwestern Russian Platform. Nauka, Moscow, 312 p. (in Russian) [Копелиович А.В. Эпигенез древних толщ юго-запада Русской платформы. М.: Наука, 1965. 312 с.].
15. Letnikova E.F., Kuznetsov A.B., Vishnevskaya I.A., Veshcheva S.V., Proshenkin A.I., Geng H., 2013. The Vendian passive continental margin in the southern Siberian Craton: geochemical and isotopic (Sr, Sm–Nd) evidence and U–Pb dating of detrital zircons by the LA-ICP-MS method. Russian Geology and Geophysics 54 (10), 1177–1194. http://dx.doi.org/10.1016/j.rgg.2013.09.004.
16. Levitskii V.I., Mel'nikov A.I., Reznitskii L.Z., Bibikova E.V., Kirnozova T.I., Kozakov I.K., Makarov V.A., Plotkina Yu.V., 2002. Early Proterozoic postcollisional granitoids in Southwestern Siberian craton. Geologiya i Geofizika (Russian Geology and Geophysics) 43 (8), 717–731.
17. Logvinenko N.V., 1974. Petrography of Sedimentary Rocks. Vysshaya Shkola, Moscow, 400 p. (in Russian) [Логвиненко Н.В. Петрография осадочных пород. М.: Высшая школа, 1974. 400 с.].
18. McLennan S.M., 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems 2 (4), 1021. http://dx.doi.org/10.1029/2000GC000109.
19. McLennan S.M., Hemming S., McDaniel D.K., Hanson G.N., 1993. Geochemical approaches to sedimentation, provenance, and tectonics. In: M.J. Johnsson, A. Basu (Eds.), Processes controlling the composition of clastic sediments. Geological Society of America Special Papers, vol. 284, p. 21–40. http://dx.doi.org/10.1130/SPE284-p21.
20. Metelkin D.V., Blagovidov V.V., Kazansky A.Y., 2010. The history of the Karagas Supergroup evolution in the Biryusa region: synthesis of paleomagnetic and sedimentological data. Russian Geology and Geophysics 51 (8), 868–884. http://dx.doi.org/10.1016/j.rgg.2010.07.005.
21. Motova Z.L., 2016. Ages of detrital zircons in the Late Precambrian sedimentary beds of the south-western flank of the Siberian craton and their geodynamic interpretation. In: Scientific conference of young scientists and post-graduate students, IPE RAS. Abstracts, and conference programme (Moscow, April 25–26, 2016). IPE RAS, Moscow, p. 46 (in Russian) [Мотова З.Л. Возрасты детритовых цирконов в позднедокембрийских осадочных толщах юго-западного фланга Сибирского кратона и их геодинамическая интерпретация // Научная конференция молодых ученых и аспирантов ИФЗ РАН: Тезисы докладов и программа конференции (г. Москва, 25–26 апреля 2016 г.). М.: ИФЗ РАН, 2016. С. 46].
22. Nesbitt H.W., Young G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299 (5885), 715–717. http://dx.doi.org/10.1038/299715a0.
23. Nesbitt H.W., Young G.M., 1989. Formation and diagenesis of weathering profiles. The Journal of Geology 97 (2), 129–147.
24. Nozhkin A.D., Gavrilenko V.A., 1976. Gold and radioactive elements in polyfacial deposits of the Upper Precambrian (cases of the Upper Riphean and Vendian northern Yenisei Ridge). Proceedings of the Institute of Geology and Geophysics. Issue 324. Nauka, Novosibirsk, 198 p. (in Russian) [Ножкин А.Д., Гавриленко В.А. Золото и радиоактивные элементы в полифациальных отложениях верхнего докембрия (на примере верхнего рифея и венда северной части Енисейского кряжа). Труды Института геологии и геофизики. Вып. 324. Новосибирск: Наука, 1976. 198 с.].
25. Nozhkin A.D., Turkina O.M., Sovetov Y.K., Travin A.V., 2007. The Vendian accretionary event in the southwestern margin of the Siberian Craton. Doklady Earth Sciences 415 (2), 869–873. http://dx.doi.org/10.1134/S1028334X07060098.
26. Panteeva S.V., Gladkochoub D.P., Donskaya T.V., Markova V.V., Sandimirova G.P., 2003. Determination of 24 trace elements in felsic rocks by inductively coupled plasma mass spectrometry after lithium metaborate fusion. Spectrochimica Acta Part B: Atomic Spectroscopy 58 (2), 341–350. http://dx.doi.org/10.1016/S0584-8547(02)00151-9.
27. Pettijohn F.J., 1975. Sedimentary Rocks (Third edition). Harper & Row, New York, 628 p. [Русский перевод: Петтиджон Ф.Дж. Осадочные породы. М.: Недра, 1981. 751 с.].
28. Pettijohn F.J., Potter P.E., Siever R., 1972. Sand and Sand-stones. Springer, New York, 158 p.
29. Revenko А.G., 2014. Physical and chemical methods of researching rocks and minerals in the Analytical Centre of the Institute of the Earth's crust, SB RAS. Geodynamics & Tectonophysics 5 (1), 101–114 (in Russian) [Ревенко А.Г. Физические и химические методы исследования горных пород и минералов в Аналитическом центре ИЗК СО РАН // Геодинамика и тектонофизика. 2014. Т. 5. № 1. С. 101–114]. http://dx.doi.org/10.5800/GT-2014-5-1-0119.
30. Rojas-Agramonte Y., Kröner A., Demoux A., Xia X., Wang W., Donskaya T., Liu D., Sun M., 2011. Detrital and xenocrystic zircon ages from Neoproterozoic to Palaeozoic arc terranes of Mongolia: significance for the origin of crustal fragments in the Central Asian Orogenic Belt. Gondwana Research 19 (3), 751–763. http://dx.doi.org/10.1016/j.gr.2010.10.004.
31. Shenfil’ V.Yu., 1991. Late Precambrian of the Siberian Platform. Nauka, Novosibirsk, 185 p. (in Russian) [Шенфиль В.Ю. Поздний докембрий Сибирской платформы. Новосибирск: Наука, 1991. 185 с.].
32. Sklyarov E.V. (Ed.), 2001. Interpretation of Geochemical Data. Intermet Engineering, Moscow, 288 p. (in Russian) [Интерпретация геохимических данных / Ред. Е.В. Скляров. М.: Интермет Инжиниринг, 2001. 288 с.].
33. Sklyarov E.V. (Ed.), 2006. Precambrian Evolution of Southern Part of the Siberian Craton. Siberian Branch of RAS Publishing House, Novosibirsk, 367 p. (in Russian) [Эволюция южной части Сибирского кратона в докембрии / Ред. Е.В. Скляров. Новосибирск: Изд-во СО РАН, 2006. 367 с.].
34. Sovetov Yu.K., 2011. Vendian sedimentary basin in the southwestern part of the Siberian craton: two stages of formation. In: Geodynamic evolution of the lithosphere of the Central Asian mobile belt (from ocean to continent). Issue 9. IEC SB RAS, Irkutsk, p. 190–192 (in Russian) [Советов Ю.К. Вендский осадочный бассейн на юго-западе Сибирского кратона: два этапа формирования // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту): Вып. 9. Иркутск: ИЗК СО РАН, 2011. С. 190–192].
35. Sovetov Yu.K., Hoffman M., Kazak A.K., Solovetskaya L.V., 2015. Two areas of denudation and petrographic provinces with clastic material of Vendian sedimentary basins of the Siberian platform according to sedimentological and petrographic analysis and age of detrital zircons. In: Geodynamic evolution of the lithosphere of the Central Asian mobile belt (from ocean to continent). Issue 13. IEC SB RAS, Irkutsk, p. 227–229 (in Russian) [Советов Ю.К., Хоффман М., Казак А.К., Соловецкая Л.В. Две области сноса и петрографические провинции кластического материала вендских осадочных бассейнов Сибирской платформы по данным седиментологического и петрографического анализа и по возрасту детритовых цирконов // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту). Вып. 13. Иркутск: ИЗК СО РАН, 2015. С. 227–229].
36. Sovetov Yu.K., Komlev D.A., 2005. Tillites at the base of the Oselok Group, foothills of the Sayan Mountains, and the Vendian lower boundary in the southwestern Siberian Platform. Stratigraphy and Geological Correlation 13 (4), 337–366.
37. Stanevich A.M., Mazukabzov A.M., Postnikov A.A., Nemerov V.K., Pisarevsky S.A., Gladkochub D.P., Donskaya T.V., Kornilova T.A., 2007. Northern segment of the Paleoasian Ocean: Neoproterozoic deposition history and geodynamics. Russian Geology and Geophysics 48 (1), 46–60. http://dx.doi.org/10.1016/j.rgg.2006.12.005.
38. Taylor S.R., McLennan S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, London, 312 p. [Русский перевод: Тейлор С.Р., Мак-Леннан С.М. Континентальная кора: ее состав и эволюция. М.: Мир, 1988. 384 с.].
39. Turkina O.M., Bibikova E.V., Nozhkin A.D., 2003. Stages and geodynamic settings of Early Proterozoic granite formation on the southwestern margin of the Siberian Craton. Doklady Earth Sciences 389 (2), 159–163.
40. Turkina O.M., Nozhkin A.D., Bayanova T.B., 2006. Sources and formation conditions of Early Proterozoic granitoids from the southwestern margin of the Siberian craton. Petrology 14 (3), 262–283. http://dx.doi.org/10.1134/S0869591106030040.
41. Varga A.R., Szakmány G., 2004. Geochemistry and provenance of the upper carboniferous sandstones from Borehole Diósviszló-3 (Téseny Sandstone Formation, SW Hungary). Acta Mineralogica-Petrographica, Szeged 45 (2), 7–14.
42. Varga A., Szakmány G., Árgyelán T., Józsa S., Raucsik B., Máthé Z., 2007. Complex examination of the Upper Paleozoic siliciclastic rocks from southern Transdanubia, SW Hungary – Mineralogical, petrographic, and geochemical study. In: J. Arribas, M.J. Johnsson, S. Critelli (Eds.), Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry. Geological Society of America Special Papers, vol. 420, p. 221–240. http://dx.doi.org/10.1130/2006.2420(14).
43. Yapaskurt O.V., 1994. Stage Analysis of Lithogenesis. MSU Publishing House, Moscow, 142 p. (in Russian) [Япаскурт О.В. Стадиальный анализ литогенеза. М.: Изд-во МГУ, 1994. 142 с.].
44. Yudovich Ya.E., Ketris M.P., 2000. Fundamentals of Lithochemistry. Nauka, St. Petersburg, 497 p. (in Russian) [Юдович Я.Э., Кетрис М.П. Основы литохимии. СПб.: Наука, 2000. 497 с.].
45. Yudovich Ya.E., Ketris M.P., 2008. Mineral Indicators of Lithogenesis. Geoprint, Syktyvkar, 564 p. (in Russian) [Юдович Я.Э., Кетрис М.П. Минеральные индикаторы литогенеза. Сыктывкар: Геопринт, 2008. 564 с.
Review
For citations:
Motova Z.L., Donskaya T.V., Gladkochub D.P. THE COMPOSITION AND RECONSTRUCTION OF THE SOURCE AREA FOR THE LATE PRECAMBRIAN TERRIGENOUS ROCKS OF THE OSELKOVAYA SERIES (BIRYUSA PRISAYANIE). Geodynamics & Tectonophysics. 2016;7(4):625-649. (In Russ.) https://doi.org/10.5800/GT-2016-7-4-0225