PETRO- AND PALEOMAGNETIC STUDIES OF BASALTS OF THE UPPER DEVONIAN APPAINSKAYA SUITE (WESTERN YAKUTIA)
https://doi.org/10.5800/GT-2016-7-4-0224
Abstract
Introduction. One of the main tasks of paleomagnetic studies is to obtain a framework of reference poles for calculating the kinematic characteristics of lithospheric taxones as a basis for geodynamic reconstructions. Each paleomagnetic reference point must have a precise (±10 Ma) geochronological dating and a maximum paleomagnetic reliability index. A correct paleomagnetic pole (PMP) can be obtained from the data of geochronological and paleomagnetic studies conducted in one and the same geological object, such as a suite, an intrusive complex etc. In the Yakutian diamondiferous province (YDP), such objects include basalt nappes of the Upper Devonian Appainskaya suite, which stratigraphic position is undoubted (Fran, 385–375 Ma).
Geological setting (in brief). In the eastern segments of the Siberian platform, a powerful cycle of tectonic and magmatic activity in the Middle Paleozoic produced transgressive and sheet intrusions, volcanic pipes, lava and tuff formations comprised of basites, as well as all the currently known industrial diamondiferous kimberlite bodies. Magmatic activity of basites was associated with formation of paleorift systems, including the largest one, Viluyi paleorift (Fig. 1). In the Middle Paleozoic, the geodynamic setting for magmatism and rifting was determined by the plume-lithosphere interaction. The rise of the plume’s matter underneath the thinned lithosphere was accompanied by decompression melting and formation of basaltic magmas in large volumes.
We have studied basalts of the Appainskaya suite which were sampled from the Ygyatta and Markha river valleys (Fig. 2). In the coastal outcrops at the Ygyatta river, two nappes are observed, a (stratigraphically) lower outcrop 17÷23/10 containing plagiophyre palagonite basalts (upper five meters are outcropped), and an upper outcrop 16/10 containing olivinophyric palagonite basalts (upper three meters are outcropped). In the coastal outcrops of the Markha river, from the Enerdek loop to the M. Dyukteli river (outcrop 16÷20/14), only plagiophyric basalts of the lower nappe are developed. At this location, the total capacity of the basalts can reach 35–40 m. In view of the fact that the basalts lie subhorizontally at angles up to 5° (outcrop 17/14, Fig. 3), oriented samples were taken in the modern system of coordinates.
Formational features of the chemical composition typical of the Middle Paleozoic intrusive basites (higher contents of Ti, Fe and K) are less clear in derivatives of the effusive facies. By their chemical composition, the basalts are normal alkalinity rocks (the sum of alkali not higher than 3.05 %; SiO2=48.1–49.7 %; rather moderate content of TiO2=1.9–2.5 %) (Fig. 4 A, B). The amount of magnesia (Mg#) ranges from 46 to 56. The main carriers of natural remanent magnetization (NRM, In) are titanomagnetites that belong to titanomagnetite and hemo-ilmenite series (Fig. 4).
Research. Our research was conducted in specialized laboratories using modern equipment and facilities of Geo-Scientific Research Enterprise (NIGP) PJSC ALROSA (Mirny), Institute of the Earth's Crust SB RAS (Irkutsk), Kazan Federal University (Kazan) and Institute of Geology of Diamond and Precious Metals SB RAS (Yakutsk).
Research results. By magnetic (scalar and vector) parameters, basalts of the Appainskaya suite are characterized by the bimodal distribution of magnetic susceptibility values, NRM and æ: geometric means are 810·10–5 Si-units and 225·10–3 А/m, respectively, at the Ygyatta river, and 1470·10–5 SI-units and 490·10–3 А/m, respectively, at the Markha river (Table 1, Fig. 5). Factor Q is below 1. Results of the petrophysical observations are consistent with the geological materials and suggest that the basalts at the Ygyatta river occupy the upper stratigraphic horizon.
The studied outcrops of basalts of the Appainskaya suite have the following characteristic components of Inch:
1. Component А – negative vectors of the characteristic NRM are clustered in the fourth sector of the stereogram (sample Igy179m1, Fig. 10, Fig. 14 А, Table 2). Found in outcrop 16/10. Component А is metachronic Inm that formed due to heating of basalts by dolerites of the Ygyatta sill, which suggests the dyke-type of the anisotropy of magnetic susceptibility (AMS) (Fig. 6 C) and a high oxidation level of titanomagnetites (sample 179, Fig. 8).
2. Component B – steep positive vectors of the characteristic Inch (samples Igy224m2, Mrh142m2 and Mrh176t2, Fig. 10, Fig. 14 А, Table. 2). Found in outcrops 20/10 and 16÷18/14. Component В is typical of the outcrops with significant deviations of the axes of the AMS ellipse (Fig. 6 D, E), which suggests epigenetic changes in the basalts. New occurrences of titanomaghemites are observed in the studied outcrops (sample 228, Fig. 8), which leads to an almost complete destruction of vector In0 and formation of viscous NRM – Inv, which are oriented in the direction similar to the geomagnetic field. This conclusion is supported by the ‘artificial magnetization reversal’ tests (Fig. 11 А).
3. Component C – negative vectors of the characteristic NRM are clustered in the first sector of the stereogram at angles varying from –50 to –40° (Fig. 12, Fig. 14, Table 2). Found in four outcrops at the Ygyatta river (outcrops 17/10, and 21÷23/10).
4. Component D – positive vectors of the characteristic NRM are clustered in the third sector of the stereogram at angles varying from 40 to 50° (Fig. 13, Fig. 14, Table 2). Found in four outcrops at the Markha river (outcrops 20А, 20В, and 20С/14).
The primary origin of characteristic components C and D of the basalts is determined as follows:
- The ‘sedimentary’ type of AMS (Fig. 6 E, and Fig. 6 F);
- According to the differential thermomagnetic analysis (DTMA), the mineral carrier of magnetization is virtually unaltered titanomagnetite with the Curie point of ≈550°C (samples 254 and 204, Fig. 8);
- The presence of samples with negative NRM vectors (Table 1);
- The magnetically stable state of the components is confirmed by high values of hysteresis parameters (Fig. 7) and the ‘artificial magnetization reversal’ experiment (Fig. 11 B).
- The positive inversion test (Table 3, Fig. 14 B, and Fig. 14 C): γ/γс=5.1/6.2 at the sample level, and γ/γс=8.7/16.2 at the site level.
Discussion. Data on 12 sites and previously published values were used to calculate the reference paleomagnetic pole (PMP) (Fran) (Table 5, Fig. 15, А). The PMP coordinates are as follows: latitude j=1.7°, longitude l=92.8°, and confidence intervals dp/dm=3.7/5.9°. The PMP’s paleomagnetic reliability index is high enough, and the PMP can be thus considered as a reference for the Frasnian period (370±5 Ma). On this basis, taking into account the previous paleomagnetic data, paleomagnetic reconstructions of the Siberian platform, ranging from 420 up to 325 Ma, are obtained in our study (Fig. 15, B). In the above-mentioned period of time, the Siberian platform gradually moved in one direction, mostly latitudinal, from 11° to 25° N. After the Appainskaya time, the latitudinal movement was replaced by motions in the predominantly meridional eastward direction, and the average displacement velocity in these segments increased from 4.4 to 6.7 cm/year. It is possible that after the formation of the Appainskaya suite (Fran), the Siberian platform could pass the three hot spots representing the modern Atlantic islands near the northwestern coast of Africa (Canary, Madeira and Azores, i.e. the northern flank of the African superplume). These hotspots might have formed the tracks (Fig. 15) that controlled the intrusion of alkaline ultrabasic melts and formation of kimberlites in the Late Devon – Early Carbon.
Conclusion. In the lower stream composed of the palagonite plagiophyre basalts of the Appainskaya suite, the paleomagnetic studies reveal two primary components of the NRM vectors, from bottom to top, D and C, respectively, with the direct and reverse polarity. Their presence in the basalts is marked by the ‘sedimentary’ type of AMS, practically un-oxidized titanomagnetites, and the positive inversion test.
The reference PMP for the basalts of the Appainskaya suite, which is determined in our studies, provides for a more precise definition of the paleogeographic position and reconstruction of the drift of the Siberian platform in the Middle Paleozoic (from 420 to 325 Ma) and makes it possible to associate this drift with probable energy sources (i.e. hot spots), which might have been related to the intrusion of kimberlites.
About the Authors
К. M. KonstantinovRussian Federation
Konstantinov, Konstantin M., Doctor of Geology and Mineralogy, Head of Laboratory Geological Enterprise of Exploration, Public Joint Stock Company «ALROSA»
16 Chernychevskoe highway, Mirny 678174
М. D. Tomshin
Russian Federation
Tomshin, Mikhail D., Candidate of Geology and Mineralogy, Senior Researcher, Head of Laboratory
39 Lenin prospect, Yakutsk 677980
Sh. Z. Ibragimov
Russian Federation
Ibragimov, Shamil Z., Candidate of Geology and Mineralogy, assistant professor department of Geophysics Institute of Geology and Petroleum Technologies
4/5 Kremlyovskaya street, Kazan 420111
М. Z. Khuzin
Russian Federation
Huzin, Marat Z., Leading Engineer I
128 Lermontov street, Irkutsk 664033
I. K. Konstantinov
Russian Federation
Konstantinov, Innokentiy K., senior laboratory assistant
128 Lermontov street, Irkutsk 664033
A. A. Yakovlev
Russian Federation
Yakovlev, Andrey A., junior researcher G
16 Chernychevskoe highway, Mirny 678174
E. V. Artemova
Russian Federation
Artemova, Elena V., engineer
16 Chernychevskoe highway, Mirny 678174
References
1. Akimoto S., 1962. Magnetic properties of FeO-Fe2O-TiO2 system as a basis of rock magnetism. Journal of the Physical Society of Japan 17 (Suppl. B-1.), 84–97.
2. Borovikov V.P., 2001. STATISTICA: The Art of Data Analysis by Computer. For Professionals. Piter, St. Petersburg, 658 p. (in Russian) [Боровиков В.П. STATISTICA: искусство анализа данных на компьютере. Для профессионалов. СПб.: Питер, 2001. 658 с.].
3. Burov B.V., Yasonov P.G., 1979. Introduction to Differential Thermomagnetic Analysis of Rocks. Publishing House of Kazan University, Kazan, 231 p. (in Russian) [Буров Б.В., Ясонов П.Г. Введение в дифференциальный термомагнитный анализ горных пород. Казань: Изд-во Казанского университета, 1979. 231 с.].
4. Chumakov N.M., 1959. Stratigraphy and tectonics of the southwestern part of the Vilyui depression. In: Tectonics of the USSR. Vol. 4. Publishing House of the USSR Academy of Sciences, Moscow, p. 345–451 (in Russian) [Чумаков Н.М. Стратиграфия и тектоника юго-западной части Вилюйской впадины // Тектоника СССР. М.: Изд-во АН СССР, 1959. Т. 4. С. 345–451].
5. Courtillot V., Kravchinsky V.A., Quidelleur X., Renne P.R., Gladkochub D.P., 2010. Preliminary dating of the Viluy traps (Eastern Siberia): Eruption at the time of Late Devonian extinction events? Earth and Planetary Science Letters 300 (3–4), 239–245. http://dx.doi.org/10.1016/j.epsl.2010.09.045.
6. Day R., Fuller M.D., Schmidt V.A., 1977. Hysteresis properties of titanomagnetites: grain size and composition dependence. Physics of the Earth and Planetary Interiors 13 (4), 260–267. http://dx.doi.org/10.1016/0031-9201(77)90108-X.
7. Enkin R.J., 1994. A Computer Program Package for Analysis and Presentation of Paleomagnetic Data. Pacific Geoscience Centre, Geological Survey of Canada, Sidney, 16 p.
8. Fisher R.A., 1953. Dispersion on a sphere. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 217 (1130), 295–305. http://dx.doi.org/10.1098/rspa.1953.0064.
9. Gaiduk V.V., 1988. The Viluyi Middle Paleozoic Rift System. Yakutian Branch of SB AS USSR, Yakutsk, 128 p. (in Russian) [Гайдук В.В. Вилюйская среднепалеозойская рифтовая система. Якутск: ЯФ СО АН СССР, 1988. 128 с.].
10. Giniyatullin I.M., Blazhkun D.V., Ivashina E.I., Korobkov G.V., 1989. The Reference Legend of the Botuoba Series of Sheets of the USSR State Geological Map, Scale 1:500000. Materials for the Legend of the Botuoba Series of Geological Map Sheets, Scale 1:500000. Ed. E.K. Kovrigin. Publishing House of Botuoba GPE, Yakutskgeologia, the USSR Ministry of Geology, Mirny, 70 p. (in Russian) [Гиниятуллин И.М., Блажкун Д.В., Ивашина Е.И., Коробков Г.В. Опорная легенда Ботуобинской серии листов Государственной геологической карты СССР масштаба 1:500000. Материалы к легенде Ботуобинской серии листов геологических карт масштаба 1:500000 / Ред. Е.К. Ковригин. Мирный: Изд-во Ботуобинской ГРЭ ПГО «Якутскгеология» Министерства геологии СССР, 1989. 70 с.].
11. Gurevich E.L., 1984. Paleomagnetism of Ordovician sediments in the cross-section at the Moiero river. In: A.N. Khramov (Ed.), Paleomagnetic Methods in Stratigraphy. VNIGRI Publishing House, Leningrad, p. 35–41 (in Russian) [Гуревич Е.Л. Палеомагнетизм ордовикских отложений в разрезе на р. Мойеро // Палеомагнитные методы в стратиграфии / Ред. А.Н. Храмов. Л.: Изд-во ВНИГРИ, 1984. С. 35–41].
12. Ibragimov Sh.Z., Yasonov P.G., 1999. Thermomagnetic Constraints on the Composition of Titanomagnetites with Exsolution Structures of Magnetite-Ulvospinel. Izvestiya, Physics of the Solid Earth 35 (11), 962–966.
13. Jelínek V., 1997. Measuring Anisotropy of Magnetic Susceptibility on a Slowly Spinning Specimen – Basic Theory. Agico Print, № 10, Brno, 27 p.
14. Khramov A.N. (Ed.), 1973. Paleomagnetic Directions and Paleomagnetic Poles. MCD-B Materials. The USSR Reference Data. Vol. 2. Moscow, 90 p. (in Russian) [Палеомагнитные направления и палеомагнитные полюса. Материалы МЦД-Б. Справочные данные по СССР / Ред. А.Н. Храмов. Вып. 2. М., 1973. 90 с.].
15. Khramov A.N. (Ed.), 1975. Paleomagnetic Directions and Paleomagnetic Poles. MCD-B Materials. The USSR Reference Data. Ed. A.N. Khramov. Vol. 3. Moscow, 44 p. (in Russian) [Палеомагнитные направления и палеомагнитные полюса. Материалы МЦД-Б. Справочные данные по СССР / Ред. А.Н. Храмов. Вып. 3. М., 1975. 44 с.].
16. Khramov A.N., 1991. Standard Series of Paleomagnetic Poles for Plates of Northern Eurasia: Relation to Problems of Paleogeodynamics of the USSR Territory. In: Paleomagnetism and Paleogeodynamics of the USSR Territory (VNIGRI Proceedings). Leningrad, 125 p. (in Russian) [Храмов А.Н. Стандартные ряды палеомагнитных полюсов для плит Северной Евразии: связь с проблемами палеогеодинамики территории СССР // Палеомагнетизм и палеогеодинамика территории СССР (Труды ВНИГРИ). Л., 1991. 125 с.].
17. Khramov A.N., Goncharov G.I., Komissarova R.A., Pisarevsky S.A., Pogarskaya I.A., Rzhevsky Yu.S., Rodionov V.P., Slautsitais I.P., 1982. Paleomagnetology. Nedra, Leningrad, 312 p. (in Russian) [Храмов А.Н., Гончаров Г.И., Комиссарова Р.А., Писаревский С.А., Погарская И.А., Ржевский Ю.С., Родионов В.П., Слауцитайс И.П. Палеомагнитология. Л.: Недра, 1982. 312 с.].
18. Khuzin M.Z., Konstantinov K.M., 2015. The artificial magnetic reversal test to determine the magnetic memory of a rock sample. In: Paleomagnetism and Rock Magnetism: Theory, Practice, Experiment. Proceedings of the International Workshop (Borok, 9–12 November 2015). Filigran, Yaroslavl, p. 235–239 (in Russian) [Хузин М.З., Константинов К.М. Тест искусственного перемагничивания по определению магнитной памяти в образце горной породы // Палеомагнетизм и магнетизм горных пород: теория, практика, эксперимент: Материалы международной школы-семинара (Борок, 9–12 ноября 2015 г.). Ярославль: Филигрань, 2015. С. 235–239].
19. Kiselev A.I., Yarmolyuk V.V., Ivanov A.V., Egorov K.N., 2014. Middle Paleozoic basaltic and kimberlitic magmatism in the northwestern shoulder of the Vilyui Rift, Siberia: relations in space and time. Russian Geology and Geophysics 55 (2), 144–152. http://dx.doi.org/10.1016/j.rgg.2014.01.003.
20. Kolodeznikov K.E., 1982. Devon and Lower Carbon of the Western Segment of the Vilyui Syncline. Nauka, Moscow, 101 p. (in Russian) [Колодезников К.Е. Девон и нижний карбон западной части Вилюйской синеклизы. М.: Наука, 1982. 101 с.].
21. Konstantinov I.K., Khuzin M.Z., Konstantinov K.M., 2011. Paleomagnetic studies of rocks of the Upper Cambrian Verkholensk suite (southern Siberian craton). Nauka i obrazovanie (Science and Education) (3), 10–15 (in Russian) [Константинов И.К., Хузин М.З., Константинов К.М. Палеомагнитные исследования пород верхоленской свиты верхнего кембрия (юг Сибирского кратона) // Наука и образование. 2011. № 3. С. 10–15].
22. Konstantinov I.K., Konstantinov K.M., Yakovlev A.A., 2013. Petrophysical and paleomagnetic studies of the major structural-material complexes in the Molodo-Popigai fault zone. In: Paleomagnetism and Magnetism of Rocks: Proceedings of the International Summer School-Workshop. Kazan, p. 108–113 (in Russian) [Константинов И.К., Константинов К.М., Яковлев А.А. Петрофизические и палеомагнитные исследования основных структурно-вещественных комплексов Молодо-Попигайской зоны разломов // Палеомагнетизм и магнетизм горных пород: Материалы международной школы-семинара. Казань, 2013. С. 108–113].
23. Konstantinov K.M., 1998. The Dynamic Physical-Geological Model of the Baikal Folded Region Based on Paleomagnetic Data. Candidate of Sciences Thesis (Geology and Mineralogy). Irkutsk, 18 p. (in Russian) [Константинов К.М. Динамическая физико-геологическая модель Байкальской складчатой области по палеомагнитным данным: Автореф. дис. … канд. геол.-мин. наук. Иркутск, 1998. 18 с.].
24. Konstantinov K.M., 2006. Solution of problems of geodynamics and volcanism of the Siberian platform based on paleomagnetic data. In: Volcanism and Geodynamics: Proceedings of the 3rd All-Russia Symposium on Volcanology and Paleovolcanology. Vol. 1. Publishing House of the Buryatian Scientific Center SB RAS, Ulan Ude, p. 30–33 (in Russian) [Константинов К.М. Решение вопросов геодинамики и вулканизма Сибирской платформы на основе палеомагнитных данных // Вулканизм и геодинамика: Материалы III Всероссийского симпозиума по вулканологии и палеовулканологии. Улан-Удэ: Изд-во Бурятского научного центра СО РАН, 2006. Т. 1. С. 30–33].
25. Konstantinov K.M., 2014. Magnetism of Kimberlites and Trappes in the Junction Zone of the Vilyui and Tunguska Synclines in the Siberian Platform. PhD Thesis (Geology and Mineralogy). Irkutsk State University, Irkutsk, 34 p. (in Russian) [Константинов К.М. Магнетизм кимберлитов и траппов зоны сочленения Вилюйской и Тунгусской синеклиз Сибирской платформы: Автореф. дис. … докт. геол.-мин. наук. Иркутск: Иркутский государственный университет, 2014. 34 с.].
26. Konstantinov K.M., Bazhenov M.L., Fetisova A.M., Khutorskoy M.D., 2014a. Paleomagnetism of trap intrusions, East Siberia: Implications to flood basalt emplacement and the Permo-Triassic crisis of biosphere. Earth and Planetary Science Letters 394, 242–253. http://dx.doi.org/10.1016/j.epsl.2014.03.029.
27. Konstantinov K.M., Gladkov A.S., 2009. Petromagnetic heterogeneities in sintering zones of Permian-Triassic traps of Komsomolsk pipe deposit (Yakutsk diamond province). Doklady Earth Sciences 427 (1), 880–886. http://dx.doi.org/10.1134/S1028334X09050365.
28. Konstantinov K.M., Ibragimov S.Z., Konstantinov I.K., Yakovlev A.A., Artemova E.V., Monkhorov R.V., 2016. Paleomagnetism of pre-kimberlite dykes of dolerites in the Vilyui-Markha fault zone (Yakutian diamondiferous province). Nauka i Obrazovanie (Science and Education) (1), 13–20 (in Russian) [Константинов К.М., Ибрагимов Ш.З., Константинов И.К., Яковлев А.А., Артемова Е.В., Монхоров Р.В. Палеомагнетизм докимберлитовых даек долеритов Вилюйско-Мархинской зоны разломов (Якутская алмазоносная провинция) // Наука и образование. 2016. № 1. С. 13–20].
29. Konstantinov K.M., Khuzin M.Z., Kuz’menok A.N., Savrasov D.I., Tomshin M.D., Kiselev A.I., Gladkochub D.P., 2007. Paleomagnetism of the Middle Paleozoic basites in the zones of influence of the Vilyui and Kyutyungda paleorifts, Siberian platform (the first stage). In: Paleomagnetism and Rock Magnetism: Theory, Practice, Experiment. Proceedings of the Workshop (Borok, 18–21 October 2007). GEOS, Moscow, p. 72–76 (in Russian) [Константинов К.М., Хузин М.З., Кузьменок А.Н., Саврасов Д.И., Томшин М.Д., Киселев А.И., Гладкочуб Д.П. Палеомагнетизм среднепалеозойских базитов из зон влияния Вилюйского и Кютюнгдинского палеорифтов Сибирской платформы (первый этап) // Палеомагнетизм и магнетизм горных пород: теория, практика, эксперимент: Материалы семинара (Борок, 18–21 октября 2007 г.). М.: ГЕОС, 2007. С. 72–76].
30. Konstantinov K.M., Mishenin S.G., Tomshin M.D., Kornilova V.P., Kovalchuk O.E., 2014b. Petromagnetic heterogeneities of the Permo-Triassic traps of the Daldyn-Alakit diamond province (Western Yakutia). Litosfera (Lithosphere) (2), 77–98 (in Russian) [Константинов К.М., Мишенин С.Г, Томшин М.Д., Корнилова В.П., Ковальчук О.Е. Петромагнитные неоднородности пермотриасовых траппов Далдыно-Алакитского алмазоносного района (Западная Якутия) // Литосфера. 2014. № 2. С. 77–98].
31. Konstantinov K.M., Stegnitskii Y.B., 2012. The late Silurian-Early Devonian natural remanent magnetization of kimberlites and traps in the Yakutian diamondiferous province. Doklady Earth Sciences 442 (1), 152–158. http://dx.doi.org/10.1134/S1028334X12010254.
32. Kravchinsky V.A., Konstantinov K.M., Cogne J.-P., 2001. Palaeomagnetic study of Vendian and Early Cambrian rocks of South Siberia and Central Mongolia: was the Siberian platform assembled at this time? Precambrian Research 110 (1–4), 61–92. http://dx.doi.org/10.1016/S0301-9268(01)00181-4.
33. Kravchinsky V.A., Konstantinov K.M., Courtillot V., Savrasov J.I., Valet J-P., Cherniy S.D., Mishenin S.G., Parasotka B.S., 2002. Paleomagnetism of East Siberian traps and kimberlites: two new poles and paleogeographic reconstructions at about 360 and 250 Ma. Geophysical Journal International 148 (1), 1–33. http://dx.doi.org/10.1046/j.0956-540x.2001.01548.x.
34. Kuzmin M.I., Yarmolyuk V.V., Kravchinsky V.A., 2010. Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province. Earth-Science Reviews 102 (1–2), 29–59. http://dx.doi.org/10.1016/j.earscirev.2010.06.004.
35. Macmillan S., Maus S., Bondar T., Chambodut A., Golovkov V., Holme R., Langlais B., Lesur V., Lowes F., Lühr H., Mai W., Mandea M., Olsen N., Rother M., Sabaka T., Thomson A., Wardinski I., 2003. The 9th-Generation International Geomagnetic Reference Field. Geophysical Journal International 155 (3), 1051–1056. http://dx.doi.org/10.1111/j.1365-246X.2003.02102.x.
36. Masaitis V.L., Mikhailov M.V., 1968. The Middle Paleozoic volcano-sedimentary series of the Ygyatta depression (the eastern segment of the Siberian platform). Geologiya i Geofizika (Russian Geology and Geophysics) (4), 43–53 (in Russian) [Масайтис В.Л., Михайлов М.В. Среднепалеозойская вулканогенно-осадочная серия Ыгыаттинской впадины (восточная часть Сибирской платформы) // Геология и геофизика. 1968. № 4. С. 43–53].
37. Mashchak M.S., Naumov M.V., 2004. The Middle Paleozoic basite magmatism of the Nakyn kimberlite field and the problem of the age of kimberlites. In: Effectiveness of prediction and prospecting of diamond deposits: past, present, and future (ALMAZY-50): Proceedings of the scientific-practical conference dedicated to the 50th anniversary of the discovery of Zarnitsa, the first diamond pipe. RF MNR, VSEGEI, ALROSA, St. Petersburg, p. 224–226 (in Russian) [Мащак М.С., Наумов М.В. Среднепалеозойский базитовый магматизм Накынского кимберлитового поля и проблема возраста кимберлитов // Эффективность прогнозирования и поисков месторождений алмазов: прошлое, настоящее и будущее (АЛМАЗЫ–50): Материалы научно-практической конференции, посвященной пятидесятилетию открытия первой алмазоносной трубки «Зарница». СПб.: МПР РФ, ВСЕГЕИ, «АЛРОСА», 2004. С. 224–226].
38. McFadden P.L., McElhinny M.W., 1990. Classification of reversal test in paleomagnetism. Geophysical Journal International 103 (3), 725–729. http://dx.doi.org/10.1111/j.1365-246X.1990.tb05683.x.
39. Mishnin V.M., Andreev A.P., Bekrenev K.A., Altukhova Z.A., 2010. The Yakutian buried uplift: injected kimberlites and their tectonic frame. Nauka i Obrazovanie (Science and Education) (2), 11–15 (in Russian) [Мишнин В.М., Андреев А.П., Бекренев К.А., Алтухова З.А. Якутское погребенное поднятие: инъецированные кимберлиты и их тектоническая рама // Наука и образование. 2010. № 2. С. 11–15].
40. Muller R.D., Royer J.-Y., Lawver L.A., 1993. Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks. Geology 21 (3), 275–278. http://dx.doi.org/10.1130/0091-7613(1993)021<0275:RPMRTT>2.3.CO;2.
41. Oleinikov B.V., 1973. Features of the composition and facies conditions of formation of basalts in the Ygyatta depression. In: V.V. Kovalsky, B.V. Oleinikov (Eds.), Geology and geochemistry of basites in the Eastern segment of the Siberian platform. Nauka, Moscow, p. 87–91 (in Russian) [Олейников Б.В. Особенности состава и фациальные условия образования базальтов Ыгыаттинской впадины // Геология и геохимия базитов восточной части Сибирской платформы / Ред. В.В. Ковальский, Б.В. Олейников. М.: Наука, 1973. С. 87–91].
42. Orlov S.Yu., Shatsillo A.V., 2011. Paleomagnetic data on the Middle Paleozoic magmatic complexes of the Appainskaya and Emyaksinskaya suites in the Ygyatta depression (Siberian platform). In: Paleomagnetism and rock magnetism: theory, practice, experiment. Proceedings of the Workshop (Borok, 27–30 October 2011). GEOS, Moscow, p. 146–151 (in Russian) [Орлов С.Ю., Шацилло А.В. Палеомагнитные данные по среднепалеозойским магматическим комплексам в составе аппаинской и эмяксинской свит Ыгыаттинской впадины (Сибирская платформа) // Палеомагнетизм и магнетизм горных пород: теория, практика, эксперимент. Материалы семинара (Борок, 27–30 октября 2011 г.). М.: ГЕОС, 2011. С. 146–151].
43. Parfenov L.M., Kuzmin M.I. (Ed.), 2001. Tectonics, Geodynamics and Metallogeny of the Republic of Sakha (Yakutia). MAIK Nauka/Interperiodika, Moscow, 517 p. (in Russian) [Тектоника, геодинамика и металлогения территории Республики Саха (Якутия) / Ред. Л.М. Парфенов, М.И. Кузьмин. М.: МАИК «Наука/Интерпериодика», 2001. 517 с.].
44. Pavlov V., Bachtadse V., Mikhailov V., 2008. New Middle Cambrian and Middle Ordovician palaeomagnetic data from Siberia: Llandelian magnetostratigraphy and relative rotation between the Aldan and Anabar–Angara blocks. Earth and Planetary Science Letters 276 (3–4), 229–242. http://dx.doi.org/10.1016/j.epsl.2008.06.021.
45. Pechersky D.M., Didenko A.N., 1995. The Paleoasian Ocean: Petromagnetic and Paleomagnetic Information on Its Lithosphere. UIPE RAS, Moscow, 298 p. (in Russian) [Печерский Д.М., Диденко А.Н. Палеоазиатский океан: петромагнитная и палеомагнитная информация о его литосфере. М.: ОИФЗ РАН, 1995. 298 с.].
46. Pechersky D.M., Sokolov D.D., 2010. Paleomagnetology, petromagnitologiya and geology. Reference Dictionary for neighbors in the specialty. IPE RAS, Moscow (in Russian) [Печерский Д.М., Соколов Д.Д. Палеомагнитология, петромагнитология и геология. Словарь-справочник для соседей по специальности. М.: ИФЗ РАН, 2010]. Available at http://paleomag.ifz.ru.
47. Powerman V., Shatsillo A., Coe R., Zhao X., Gladkochub D., Buchwaldt R., Pavlov V., 2013. Palaeogeography of the Siberian platform during middle Palaeozoic Times (∼450–400 Ma): new palaeomagnetic evidence from the Lena and Nyuya rivers. Geophysical Journal International 194 (3), 1412–1440. http://dx.doi.org/10.1093/gji/ggt197.
48. Ricci J., Quidelleur X., Pavlov V., Orlov S., Shatsillo A., Courtillot V., 2013. New 40Ar/39Ar and K-Ar ages of the Viluy traps (Eastern Siberia): Further exidence for a relationship with the Frasnian-Famennian mass extinction. Palaeogeography, Palaeoclimatology, Palaeocology 386, 531–540. http://dx.doi.org/10.1016/j.palaeo.2013.06.020.
49. Shatsillo A.V., Fedyukin I.V., Powerman V.I., 2014. Paleomagnetism of the Late Paleozoic granites of the Angara-Vitim batholith and the host rocks of the Baikal-Patom folded area: tectonic implications. Russian Geology and Geophysics 55 (7), 864–880. http://dx.doi.org/10.1016/j.rgg.2014.06.006.
50. Shipunov S.V., 1988. Identification of components of multicomponent NRM in paleomagnetic studies. In: Paleomagnetism and accretion tectonics. VNIGRI, Leningrad, p. 173–185 (in Russian) [Шипунов С.В. Выделение компонент многокомпонентной естественной остаточной намагниченности при палеомагнитных исследованиях // Палеомагнетизм и аккреционная тектоника. Л.: ВНИГРИ, 1988. С. 173–185].
51. Smelov A.P., Andreev A.P., Altukhova Z.A., Babushkina S.A., Bekrenev K.A., Zaitsev A.I., Izbekov E.D., Koroleva O.V., Mishnin V.M., Okrugin A.V., Oleinikov O.B., Surnin A.A., 2010. Kimberlites of the Manchary pipe: a new kimberlite field in Central Yakutia. Russian Geology and Geophysics 51 (1), 121–126. http://dx.doi.org/10.1016/j.rgg.2009.12.012.
52. Tarling D.H., Hrouda F., 1993. The Magnetic Anisotropy of Rocks. Chapman & Hall, London, 217 p.
53. Tomshin M.D., 2000. Features of deep differentiation of basites in the Vilyui paleorift (Siberian platform). In: Petrography at the Turn of the 21st Century. Results and Prospects. Vol. I. Syktyvkar, p. 203–205 (in Russian) [Томшин М.Д. Особенности глубинной дифференциации базитов Вилюйского палеорифта (Сибирская платформа) // Петрография на рубеже XXI века. Итоги и перспективы. Сыктывкар, 2000. Т. I. С. 203–205].
54. Tomshin M.D., Brahfogel F.F., Oleinikov B.V., Kopylova A.G., 1973. The facies composition of trappe xenoliths from kimberlite breccia and the age of pipes in the Malobotuobinsk region. In: Geology and geochemistry of basites in the Eastern segment of the Siberian Platform. Nauka, Moscow, p. 96–104 (in Russian) [Томшин М.Д., Брахфогель Ф.Ф., Олейников Б.В., Копылова А.Г. Фациальный состав ксенолитов траппов из кимберлитовых брекчий и возраст трубок Малоботуобинского района // Геология и геохимия базитов восточной части Сибирской платформы. М.: Наука, 1973. С. 96–104].
55. Tomshin M.D., Konstantinov K.M., Prokopiev A.V., 2016. Middle Paleozoic Vilyui paleorift and sequence of magmatic events. In: Geodynamic evolution of the lithosphere of the Central Asian Mobile Belt (from ocean to continent). Issue 14. Institute of the Earth’s Crust SB RAS, Irkutsk, p. 277–279 (in Russian) [Томшин М.Д., Константинов К.М., Прокопьев А.В. Среднепалеозойский вилюйский палеорифт и последовательность магматических событий // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту). Вып. 14. Иркутск: Институт земной коры СО РАН, 2016. С. 277–279].
56. Tomshin M.D., Travin A.V., Konstantinov K.M., 2015. The sequence of magmatic events within the Nakyn kimberlite field. In: Large igneous provinces, mantle plumes and metallogeny in the Earth’s History (Abstract Volume) (Irkutsk – Listvyanka, September 1–8, 2015). Publishing House of V.B. Sochava Institute of Geography SB RAS, Irkutsk, р. 128–129.
57. Tomshin M.D., Zaitsev A.I., Zemnukhov A.L., Kopylova A.G., 2004. The origin of basites in the Nakyn kimberlite field in Yakutia. Otechestvennaya Geologiya (Russian Geology) (5), 44–49 (in Russian) [Томшин М.Д., Зайцев А.И., Земнухов А.Л., Копылова А.Г. Характер становления базитов в Накынском кимберлитовом поле Якутии // Отечественная геология. 2004. № 5. С. 44–49].
58. Torsvik T.H., van der Voo R., Preeden U., Niocaill C.M., Steinberger B., Doubrovine P.V., van Hinsbergen D.J.J., Domeier M., Gaina C., Tohver E., Meert J.G., McCausland P.J.A., Cocks R.M., 2012. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews 114 (3–4), 325–368. http://dx.doi.org/10.1016/j.earscirev.2012.06.007.
59. Van der Voo R., 1993. Paleomagnetism of the Atlantic, Tethis, and Iapetus oceans. Cambrige University Press, Cambrige, 411 p.
60. Vinarsky Ya.S., Zhitkov A.N., Kravchinsky A.Ya., 1987. Automated Paleomagnetic Data Processing System OPAL. Algorithms and Software. Issue 10 (99). VIEMS, Moscow, 86 p. (in Russian) [Винарский Я.С., Житков А.Н., Кравчинский А.Я. Автоматизированная система обработки палеомагнитных данных ОПАЛ. Алгоритмы и программы. Вып. 10(99). М.: ВИЭМС, 1987. 86 с.].
61. Zaitsev A.I., Smelov A.P., 2010. Isotope Geochronology of Kimberlite Rock Formation in Yakutian Province. Ofset, Yakutsk, 108 p. (in Russian) [Зайцев А.И., Смелов А.П. Изотопная геохронология пород кимберлитовой формации Якутской провинции. Якутск: Офсет, 2010. 108 с.].
62. Zhitkov A.N., 1995. Paleokinematiks and pattern of kimberlite fields location on the Siberian platform based on the hypothesis of hot spots. In: Extended abstracts Sixth International kimberlite conference. Novosibirsk, p. 692–694.
63. Zijderveld J.D.A., 1967. Demagnetization of rocks, analysis of results. In: D.W. Collinson, K.M. Creer, S.K. Runcorn (Eds.), Methods in paleomagnetism. Elsevier, Amsterdam, р. 254–286.
Review
For citations:
Konstantinov К.M., Tomshin М.D., Ibragimov Sh.Z., Khuzin М.Z., Konstantinov I.K., Yakovlev A.A., Artemova E.V. PETRO- AND PALEOMAGNETIC STUDIES OF BASALTS OF THE UPPER DEVONIAN APPAINSKAYA SUITE (WESTERN YAKUTIA). Geodynamics & Tectonophysics. 2016;7(4):593-623. (In Russ.) https://doi.org/10.5800/GT-2016-7-4-0224