Preview

Geodynamics & Tectonophysics

Advanced search

THE DETERMINATION OF ATMOSPHERIC WATER CONTENT FROM METEOROLOGICAL AND GPS DATA

https://doi.org/10.5800/GT-2016-7-4-0222

Abstract

The Global Positioning System (GPS) based on satellites and the networks of dual frequency receivers are actively used for geodetic and geophysical applications, as well as for studying the ionosphere and troposphere. The atmospheric water content is in the focus of research as a key parameter for determining of the accuracy of weather forecasting and hydrological monitoring. The precision of atmospheric water content calculations depends on the accuracy of determination of the delays of signals propagating from GPS satellites to ground-based GPS receivers when geodynamic measurements are conducted. This paper describes a technique that allows us to estimate the integrated water vapor (IWV) in the atmosphere from measurements of GPS satellite signal delays.

We consider remote sensing of the lower atmosphere by GPS measurements to detect the water vapor content in the conventional vertical column to the top level of the troposphere (up to 12 km above the Earth's surface). In studies of the propagation of signals from GPS satellites to ground receivers, the atmospheric water vapor is taken into account as a ‘wet’ component (ZWD) of the zenith tropospheric delay (ZTD). ZTD is the sum of ZHD (hydrostatic or ‘dry’ delay) and ZWD (‘wet’ delay). ZWD values can be converted with a very high confidence in integrated water vapor (IWV) values for each installed GPS receiver.

About the Authors

O. F. Lukhneva
Institute of the Earth’s Crust, Siberian Branch of RAS
Russian Federation

Lukhneva, Olga F., Candidate of Geology and Mineralogy, Researcher.

128 Lermontov street, Irkutsk 664033



M. G. Dembelov
Institute of Physical Materials Science, Siberian Branch of RAS
Russian Federation

Dembelov, Mikhail G., Candidate of Physics and Mathematics, Senior Researcher.

6 Sakhyanova street, Ulan-Ude 670047



A. V. Lukhnev
Institute of the Earth’s Crust, Siberian Branch of RAS
Russian Federation

Lukhnev, Andrei V., Candidate of Geology and Mineralogy, Senior Researcher.

 128 Lermontov street, Irkutsk 664033



References

1. Bevis M., Businger S., Herring T., Rocken C., Anthes V., Ware R., 1992. GPS meteorology: remote sensing of atmospheric water vapor using the Global Positioning System. Journal of Geophysical Research: Atmospheres 97 (D14), 15787–15801. http://dx.doi.org/10.1029/92JD01517.

2. Davis J.L., Herring T.A., Shapiro I.I., Rogers A.E.E., Elgered G., 1985. Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio science 20 (6), 1593–1607. http://dx.doi.org/10.1029/RS020i006p01593.

3. Dembelov M.G., Bashkuev Yu.B., Lukhnev A.V., Lukhneva O.F., San’kov V.A., 2016. The moisture content in the troposphere in the Baikal region from GPS measurements. Zhurnal Radioelektroniki (Journal of Radio Electronics) (3), 1–16 (in Russian) [Дембелов М.Г., Башкуев Ю.Б., Лухнев А.В., Лухнева О.Ф., Саньков В.А. Влагосодержание тропосферы в Байкальском регионе по данным GPS измерений // Журнал радиоэлектроники. 2016. № 3. С. 1–16]. Available from: http://jre.cplire.ru/jre/mar16/10/text.pdf.

4. Dembelov M.G., Bashkuev Yu.B., Lukhnev A.V., Lukhneva O.F., San’kov V.A., 2015. Diagnostics of atmospheric water vapor content according to GPS measurements. Atmospheric and Oceanic Optics 28 (4), 291–296. http://dx.doi.org/10.1134/S1024856015040053.

5. Emardson T.R., Elgered G., Johannson J.M., 1998. Three months of continuous monitoring of atmospheric water vapor with a network of Global Positioning System receivers. Journal of Geophysical Research: Atmospheres 103 (D2), 1807–1820. http://dx.doi.org/10.1029/97JD03015.

6. Eminov R.A., Magerramov E.I., 2012. To the issue of GPS measurements of the total amount of precipitated water. Zhurnal Radioelektroniki (Journal of Radio Electronics) (7) (in Russian) [Эминов Р.А., Магеррамов Э.И. К вопросу о GPS измерениях общего количестве осаждаемой воды // Журнал радиоэлектроники. 2012. № 7. C. 1–7]. Available from: http://jre.cplire.ru/iso/jul12/8/text.pdf.

7. Khutorova O.G., Kalinnikov V.V., Kurbangaliev T.R., 2012. Variations in the atmospheric integrated water vapor from phase measurements made with receivers of satellite navigation systems. Atmospheric and Oceanic Optics 25 (6), 429–433. http://dx.doi.org/10.1134/S1024856012060073.

8. Kunitsyn V.E., Nesterov I.A., Tereshin N.A., 2015. Analysis of atmospheric moisture content according to GPS receivers data. Zhurnal Radioelektroniki (Journal of Radio Electronics) (6), 1–12 (in Russian) [Куницын В.Е., Нестеров И.А., Терешин Н.А. Анализ влагосодержания атмосферы по данным приемников GPS // Журнал радиоэлектроники. 2015. № 6. C. 1–12]. Available from: http://jre.cplire.ru/jre/jun15/12/text.pdf.

9. Lukhnev A.V., San’kov V.A., Miroshnichenko A.I., Ashurkov S.V., Byzov L.M., San’kov A.V., Bashkuev Yu.B., Dembelov M.G., Calais E., 2013. GPS-measurements of recent crustal deformation in the junction zone of the rift segments in the central Baikal rift system. Russian Geology and Geophysics 54 (11), 1417–1426. http://dx.doi.org/10.1016/j.rgg.2013.10.010.

10. Marchenko O.Yu., Mordvinov V.I., Antokhin P.N., 2012. The study of long-term variability and conditions for the formation of precipitation in the Selenga river basin. Atmospheric and Oceanic Optics 25 (12), 1084–1090 (in Russian) [Марченко О.Ю., Мордвинов В.И., Антохин П.Н. Исследование долговременной изменчивости и условий формирования атмосферных осадков в бассейне реки Селенга // Оптика атмосферы и океана. 2012. Т. 25. № 12. С. 1084–1090].

11. Moshkov A.V., Pozhidaev V.N., 2014. Features of radio wave refraction in the near-polar regions. Journal of Communications Technology and Electronics 59 (11), 1107–1111. http://dx.doi.org/10.1134/S1064226914110163.

12. Nilsson T., Elgered G., 2008. Long‐term trends in the atmospheric water vapor content estimated from ground‐based GPS data. Journal of Geophysical Research: Atmospheres 113 (D19), D19101. http://dx.doi.org/10.1029/2008JD010110.

13. Saastamoinen J., 1972. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. In: S.W. Henriksen, A. Mancini, B.H. Chovitz (Eds.), The use of artificial satellites for geodesy. AGU Geophysical Monograph Series, vol. 15, p. 247–251. http://dx.doi.org/10.1029/GM015p0247.

14. Sankov V.A., Lukhnev A.V., Miroshnitchenko A.I., Dobrynina A.A., Ashurkov S.V., Byzov L.M., Dembelov M.G., Calais E., Déverchère J., 2014. Contemporary horizontal movements and seismicity of the south Baikal Basin (Baikal rift system). Izvestiya, Physics of the Solid Earth 50 (6), 785–794. http://dx.doi.org/10.1134/S106935131406007X.

15. Smith E.K., Weintraub S., 1953. The constants in the equation for atmospheric refractive index at radio frequencies. Proceedings of the IRE 41 (8), 1035–1037. http://dx.doi.org/10.1109/JRPROC.1953.274297.

16. Wang J., Zhang L., 2009. Climate applications of a global, 2-hourly atmospheric precipitable water dataset derived from IGS tropospheric products. Journal of Geodesy 83 (3), 209–217. http://dx.doi.org/10.1007/s00190-008-0238-5.


Review

For citations:


Lukhneva O.F., Dembelov M.G., Lukhnev A.V. THE DETERMINATION OF ATMOSPHERIC WATER CONTENT FROM METEOROLOGICAL AND GPS DATA. Geodynamics & Tectonophysics. 2016;7(4):545-553. https://doi.org/10.5800/GT-2016-7-4-0222

Views: 1212


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)