TECTONOPHYSICAL SIGNS OF THE FORMATION OF STRONG EARTHQUAKE FOCI IN SEISMIC ZONES OF CENTRAL ASIA
https://doi.org/10.5800/GT-2016-7-4-0219
Abstract
Vibrations of the Earth crust and variations in the physical fields of the Earth atmosphere and ionosphere are continuously monitored by a variety of techniques and specialized facilities across the world. Nevertheless, most catastrophic earthquakes even in this century have occurred in “incidental” or “unexpected” places in “unpredicted” time. Earthquake predictions have errors as the current knowledge of focal mechanisms of strong (M≥8) earthquakes is still insufficient. It is believed today that the most common source of earthquakes is movement of rock blocks along a fault/megafracture. Such movements take place in a stepwise pattern with high or reduced friction, depending on the presence of fluids, hitches on the fault planes and other factors. Modern seismic forecasting is based on the concept of precursors.
The author considers geological and geophysical settings in areas of dynamic influence of faults, wherein 8>М>7.5 earthquakes took place. Based on earthquake recurrence curves constructed for such areas, four tectonic criteria for formation of strong earthquake sources are identified: structural (large seismically active faults), kinematic (large amplitudes of the fault wing’s displacements), rheological (physical properties of the fault infill material, such as low viscosity of the intra-fault medium) and dynamic (high rates of the fault wing’s displacements) criteria. These criteria should be in the focus of quantitative studies in order to provide a solid scientific basis for long-term forecasting of strong earthquakes. Curves constructed for the criteria can show changes in the physics of earthquake foci in case of strong seismic events.
With account of the tectonophysical features of faults associated with strong seismic events, the following conclusions are drawn. (1) In the continental lithosphere, catastrophic earthquakes (M≥8) occur in areas of dynamic influence of the major faults in the lithosphere in case of relatively high amplitudes of displacements of boundary blocks (i.e. fault wings). (2) In the relatively stable stress field, high amplitude displacements take place in case of reduced viscosity/quasi-viscosity of the medium comprising the internal structure of faults. (3) Reduced viscosity of the intra-fault medium is related to the physical conditions of transition of rocks in fault zones (mainly along the fault planes) in the state of quasi-plastic or plastic flow (unilateral pressure in excess of hydrostatic pressure, and relatively decreasing strength properties of the intra-fault medium with increasing length of the fault wings). (4) Reduced viscosity of the fault zone leads to an increase in the displacement rate of the fault wings in the constant stress field. The latter factor is the main one, transforming seismically active faults with M≤7.5 seismic events into faults of similar characteristics, but with earthquakes of higher energy, M≥8. Focal mechanisms of such earthquakes are associated with conditions for a potential increase of the displacement amplitude regardless of the presence of fluids, hitches on the fault planes and other poorly predictable factors. In-depth studies of the internal structure of faults with M≥8 earthquakes, their foci, conditions of the temporal regime of the seismic process before and after strong seismic events can discover a key to understanding the origin of earthquake sources, the criteria of energy release, and the occurrence of earthquakes with maximum energy. Further steps to develop the geological and geophysical (including tectonic) criteria for prediction of strong earthquakes should be focused on more detailed research of seismic zones wherein strong earthquakes were recorded.
About the Author
S. I. ShermanRussian Federation
Sherman, Semen I., Academician of the Russian Academy of Natural Sciences, Doctor of Geology and Mineralogy, Professor, Chief Researcher
128 Lermontov street, Irkutsk 664033
References
1. Atlas of Seismotectonics in Central Asia. Beijing, 2013. 129 p.
2. Chen S.J., Wang Z.C., Jiu-Qing T., 1998. Nonlinear magnitude frequency relation and two types of seismicity systems. Acta Seismologica Sinica 11 (2), 207–218. http://dx.doi.org/10.1007/s11589-998-0058-y.
3. Chinnery M.A., 1969. Earthquake magnitude and source parameters. Bulletin of the Seismological Society of America 59 (5), 1969–1982.
4. Dobrovolsky I.P., 1991. The Theory of Tectonic Earthquake Preparation. Nauka, Moscow, 218 p. (in Russian) [Добровольский И.П. Теория подготовки тектонического землетрясения. М.: Наука, 1991. 218 с.].
5. Florensov N.A., Solonenko V.P. (Eds.), 1963. The Gobi-Altai earthquake. Publishing House of Academy of Sciences of USSR, Moscow, 424 p. (in Russian) [Гоби-Алтайское землетрясение / Ред. Н.А. Флоренсов, В.П. Солоненко. М.: Изд-во АН СССР, 1963. 424 с.].
6. Gatinsky Yu.G., Vladova G.L., Prokhorova T.V., Rundkvist D.V., 2011. Geodynamics of Central Asia and prediction of catastrophic earthquakes. Prostranstvo i Vremya (Space and Time) (3), 124–134 (in Russian) [Гатинский Ю.Г., Владова Г.Л., Прохорова Т.В., Рундквист Д.В. Геодинамика Центральной Азии и прогноз катастрофических землетрясений // Пространство и время. 2011. № 3. С. 124–134].
7. Gorbunova E.A., Sherman S.I., 2016. The probability of strong (M≥7.5) earthquakes in fault zones of Central Asia (tectonophysical analysis). Geodynamics & Tectonophysics 7 (2), 303–314 (in Russian) [Горбунова Е.А., Шерман С.И. Вероятность сильных (М≥7.5) землетрясений в зонах разломов Центральной Азии (тектонофизический анализ) // Геодинамика и тектонофизика. 2016. Т. 7. № 2. С. 303–314]. http://dx.doi.org/10.5800/GT-2016-7-2-0208.
8. Gufeld I.L., Matveeva M.I., Novoselov O.N., 2011. Why we cannot predict strong earthquakes in the Earth’s crust. Geodynamics & Tectonophysics 2 (4), 378–415 (in Russian) [Гуфельд И.Л., Матвеева М.И., Новоселов О.Н. Почему мы не можем осуществить прогноз сильных коровых землетрясений // Геодинамика и тектонофизика. 2011. Т. 2. № 4. С. 378–415]. http://dx.doi.org/10.5800/GT-2011-2-4-0051.
9. Gutenberg B., Richter C.F., 1944. Frequency of earthquakes in California. Bulletin of the Seismological Society of America 34 (4), 185–188.
10. Han Q., Wang L., Xu J., Carpinteri A., Lacidogna G., 2015. A robust method to estimate the b-value of the magnitude–frequency distribution of earthquakes. Chaos, Solitons & Fractals 81 (Part A), 103–110. http://dx.doi.org/10.1016/j.chaos.2015.09.004.
11. Kissin I.G., 2006. Sensitive zones of the Earth’s crust as a manifestation of dynamics of the interaction of blocks. Doklady Earth Sciences 407 (2), 418–423. http://dx.doi.org/10.1134/S1028334X06030160.
12. Kocharyan G.G., Kishkina S.B., Ostapchuk A.A., 2011. Seismogenic width of a fault zone. Doklady Earth Sciences 437 (1), 412–415. http://dx.doi.org/10.1134/S1028334X11030147.
13. Kocharyan G.G., Spivak A.A., 2003. Dynamics of Deformation of Rock Blocks. Akademkniga, Moscow, 423 p. (in Russian) [Кочарян Г.Г., Спивак А.А. Динамика деформирования блочных массивов пород. М.: Академкнига, 2003. 423 с.].
14. Kostrov B.V., 1975. Mechanics of Tectonic Earthquake Source. Nauka, Moscow, 176 p. (in Russian) [Костров Б.В. Механика очага тектонического землетрясения. М.: Наука, 1975. 176 с.].
15. Kuzmin Yu.O., 2004. Recent Geodynamics of Fault Zones. Izvestiya, Physics of the Solid Earth 40 (10), 868–882.
16. Kuznetsova K.I., 1974. Features of earthquake recurrence curves and behavior of rock masses. In: Yu.V. Riznichenko (Ed.), Regional studies of seismic regime. Shtinnitsa, Kishinev, p. 100–108 (in Russian) [Кузнецова К.И. Особенности графика повторяемости землетрясений и поведение горных масс // Региональные исследования сейсмического режима / Ред. Ю.В. Ризниченко. Кишинев: Штинница, 1974. С. 100–108].
17. Lunina O.V., 2001. Lithosphere stress field as a control over seismogenic fault parameters and earthquake magnitudes. Geologiya i Geofizika (Russian Geology and Geophysics) 42 (9), 1389–1398.
18. Mogi K., 1966. Pressure dependence of rock strength and transition from brittle fracture to ductile flow. Bulletin of the Earthquake Research Institute 44 (1), 215–232.
19. National Earthquake Information Center (NEIC), 2016. Available from: http://earthquake.usgs.gov/ (last accessed October 7, 2016).
20. Pacheco J.F., Scholz C.H., Sykes L.R., 1992. Changes in frequency-size relationship from small to large earthquakes. Nature 355 (6355), 71–73. http://dx.doi.org/10.1038/355071a0.
21. Pisarenko V.F., Rodkin M.V., 2004. Heavy-tailed Distributions in Disaster Analysis. Computational seismology, vol. 38. GEOS, Moscow, 240 p. (in Russian) [Писаренко В.Ф., Родкин М.В. Распределение с тяжелыми хвостами: приложения к анализу катастроф. Вычислительная сейсмология. Вып. 38. М.: ГЕОС, 2004. 242 с.].
22. Pshennikov K.V., 1965. The Mechanism of Occurrence of Aftershocks and Nonelastic Properties of the Earth's Crust. Nauka, Moscow, 86 p. (in Russian) [Пшенников К.В. Механизм возникновения афтершоков и неупругие свойства земной коры. М.: Наука, 1965. 86 с.].
23. Purcaru G., 1975. A new magnitude-frequency relation for earthquakes and a classification of relation types. Geophysical Journal of the Royal Astronomical Society 42 (1), 61–79. http://dx.doi.org/10.1111/j.1365-246X.1975.tb05850.x.
24. Qi C., Haoxiang C., Bai J., Qi J., Li K., 2016. Viscosity of rock mass at different structural levels. Acta Geotechnica (in press). http://dx.doi.org/10.1007/s11440-016-0449-5.
25. Riznichenko Yu.V., 1965a. About seismic flow of rock masses. In: Yu.V. Riznichenko (Ed.), Dynamics of the Earth's crust. Nauka, Moscow, p. 56–63. (in Russian) [Ризниченко Ю.В. О сейсмическом течении горных масс // Динамика земной коры / Ред. Ю.В. Ризниченко. М.: Наука, 1965. С. 56–63].
26. Riznichenko Yu.V., 1965b. Relationship between rock flow and seismicity. Doklady AN SSSR 161 (1), 97–99 (in Russian) [Ризниченко Ю.В. Связь течения горных масс с сейсмичностью // Доклады АН СССР. 1965. Т. 161. № 1. С. 97–99].
27. Riznichenko Yu.V., 1985. Problems of Seismology. Selected Works. Nauka, Moscow, 408 p. (in Russian) [Ризниченко Ю.В. Проблемы сейсмологии. Избранные труды. М: Наука, 1985. 408 с.].
28. Rodkin M.V., 2016. Catastrophes and Civilization. The Problem of Civilization Survival Viewed by a Physicist. Intellect Publishing House, Dolgoprudnyi, 232 p. (in Russian) [Родкин М.В. Катастрофы и цивилизации. Проблема выживания цивилизаций глазами физика. Долгопрудный: Издательский дом «Интеллект», 2016. 232 с.].
29. Rodkin M.V., Pisarenko V.F., Ngo Thi Lu, Rukavishnikova T.A., 2014. On potential representations of the distribution law of rare strongest earthquakes. Geodynamics & Tectonophysics 5 (4), 893–904 (in Russian) [Родкин М.В., Писаренко В.Ф., Нго Тхи Лы, Рукавишникова Т.А. О возможных реализациях закона распределения редких сильнейших землетрясений // Геодинамика и тектонофизика. 2014. Т. 5. № 4. С. 893–904]. http://dx.doi.org/10.5800/GT-2014-5-4-0161.
30. Rogozhin E.A., Ioganson L.I., Zavyalov A.D., Zakharov V.S., Lutikov A.I., Slavin L.B., Reisner G.I., Ovsyuchenko A.N., Yunga S.L., Novikov S.S., 2011. Potential Seismic Sources and Seismic Precursors of Earthquakes – The Basis for a Real Earthquake Prediction. Svetoch Plus, Moscow, 368 p. (in Russian) [Рогожин Е.А., Иогансон Л.И., Завьялов А.Д., Захаров В.С., Лутиков А.И., Славина Л.Б., Рейснер Г.И., Овсюченко А.Н., Юнга С.Л., Новиков С.С. Потенциальные сейсмические очаги и сейсмологические предвестники землетрясений – основа реального сейсмического прогноза. М.: Светоч Плюс, 2011. 368 с.].
31. Sadovsky M.A., Bolkhovitinov L.G., Pisarenko V.F., 1987. Deformation of Geophysical Medium and Seismic Process. Nauka, Moscow, 100 p. (in Russian) [Садовский М.А., Болховитинов Л.Г., Писаренко В.Ф. Деформирование геофизической среды и сейсмический процесс. М.: Наука, 1987. 100 с.].
32. Sadovsky M.A., Pisarenko V.F., 1991. Seismic Process in Block Medium. Nauka, Moscow, 96 p. (in Russian) [Садовский М.А., Писаренко В.Ф. Сейсмический процесс в блоковой среде. М.: Наука, 1991. 96 с.].
33. Sherman S.I., 1977. Physical Regularities of Faulting in the Earth's Crust. Nauka, Novosibirsk, 102 p. (in Russian) [Шерман С.И. Физические закономерности развития разломов земной коры. Новосибирск: Наука, 1977. 102 с.].
34. Sherman S.I., 2009a. A tectonophysical model of a seismic zone: experience of development based on the example of the Baikal rift system. Izvestiya, Physics of the Solid Earth 45 (11), 938–951. http://dx.doi.org/10.1134/S1069351309110020.
35. Sherman S.I., 2009b. Tectonophysical parameters of lithospheric faults, selected methods of study and cases. In: Yu.L. Rebetsky (Ed.), Modern tectonophysics. Methods and results. IPE RAS, Moscow, p. 302–317 (in Russian) [Шерман С.И. Тектонофизические параметры разломов литосферы, избранные методы изучения и примеры использования // Современная тектонофизика. Методы и результаты / Ред. Ю.Л. Ребецкий. М.: ИФЗ РАН, 2009. С. 302–317].
36. Sherman S.I., 2013. Deformation waves as a trigger mechanism of seismic activity in seismic zones of the continental lithosphere. Geodynamics & Tectonophysics 4 (2), 83–117 (in Russian) [Шерман С.И. Деформационные волны как триггерный механизм сейсмической активности в сейсмических зонах континентальной литосферы // Геодинамика и тектонофизика. 2013. Т. 4. № 2. С. 83–117]. http://dx.doi.org/10.5800/GT-2013-4-2-0093.
37. Sherman S.I., 2014. Seismic Process and the Forecast of Earthquakes: Tectonophysical Conception. Academic Publishing House “Geo”, Novosibirsk, 359 p. (in Russian) [Шерман С.И. Сейсмический процесс и прогноз землетрясений: тектонофизическая концепция. Новосибирск: Академическое издательство «Гео», 2014. 359 с.].
38. Sherman S.I., 2015a. Genetic sources and tectonophysical regularities of divisibility of the lithosphere into blocks of various ranks at different stages of its formation: tectonophysical analysis. Geodynamics & Tectonophysics 6 (3), 387–408. http://dx.doi.org/10.5800/GT-2015-6-3-0187.
39. Sherman S.I., 2015b. Localization of recent strong earthquakes in Central Asia: a rare combination of geodynamic and trigger factors. In: V.V. Adushkin, G.G. Kocharian (Eds.), Trigger effects in geosystems. GEOS, Moscow, p. 138–149 (in Russian) [Шерман С.И. Локализация современных сильных землетрясений в Центральной Азии: редкое сочетание геодинамических и триггерных факторов // Триггерные эффекты в геосистемах / Ред. В.В. Адушкин, Г.Г. Кочарян. М.: ГЕОС, 2015. С. 138–149].
40. Sherman S.I., Bornyakov S.A., Buddo V.Yu., 1983. Areas of Dynamic Influence of Faults (Modelling Results). Nauka, Novosibirsk, 110 p. (in Russian) [Шерман С.И., Борняков С.А., Буддо В.Ю. Области динамического влияния разломов (результаты моделирования). Новосибирск: Наука. СО АН СССР, 1983. 110 с.].
41. Sherman S.I., Gorbunova E.A., 2010. New data on the regularities of the earthquake manifestation in the Baikal seismic zone and their forecast. Doklady Earth Sciences 435 (2), 1659–1664. http://dx.doi.org/10.1134/S1028334X10120238.
42. Sherman S.I., Ma Jin, Dem'yanovich V.M., Yanshuang G., 2014. New data on tectonophysical regularities of the epicentral and hypocentral earthquake fields in the rift systems of Central Asia. Doklady Earth Sciences 456 (2), 775–779. http://dx.doi.org/10.1134/S1028334X14060385.
43. Sherman S.I., Lysak S.V., Gorbunova E.A., 2012. A tectonophysical model of the Baikal seismic zone: testing and implications for medium-term earthquake prediction. Russian Geology and Geophysics 53 (4), 392–405. http://dx.doi.org/10.1016/j.rgg.2012.03.003.
44. Sherman S.I., Ma Jin, Gorbunova Е.А., 2015. Recent strong earthquakes in Central Asia: regular tectonophysical features of locations in the structure and geodynamics of the lithosphere. Part 1. Main geodynamic factors predetermining locations of strong earthquakes in the structure of the lithosphere in Central Asia. Geodynamics & Tectonophysics 6 (4), 409–436. http://dx.doi.org/10.5800/GT-2015-6-4-0188.
45. Sherman S.I., Seminsky K.Zh., Cheremnykh A.V., 2005a. Fault-block tectonics of Central Asia: experience of tectonophysical analysis. In: K.G. Levi, S.I. Sherman (Eds.), Top problems of recent geodynamics of Central Asia. Publishing House of SB RAS, Novosibirsk, p. 135–165 (in Russian) [Шерман С.И., Семинский К.Ж., Черемных А.В. Разломно-блоковая тектоника Центральной Азии: опыт тектонофизического анализа // Актуальные вопросы современной геодинамики Центральной Азии / Ред. К.Г. Леви, С.И. Шерман. Новосибирск: Изд-во СО РАН, 2005. С. 135–165].
46. Sherman S.I., Sorokin A.P., Savitskii V.A., 2005b. New methods for the classification of seismoactive lithospheric faults based on the index of seismicity. Doklady Earth Sciences 401A (3), 413–416.
47. Sherman S.I., Zlogodukhova О.G., 2011. Seismic belts and zones of the Earth: formalization of notions, positions in the lithosphere, and structural control. Geodynamics & Tectonophysics 2 (1), 1–34 (in Russian) [Шерман С.И., Злогодухова О.Г. Сейсмические пояса и зоны Земли: формализация понятий, положение в литосфере и структурный контроль // Геодинамика и тектонофизика. 2011. Т. 2. № 1. С. 1–34]. http://dx.doi.org/10.5800/GT-2011-2-1-0031.
48. Sherman S.I., Zlogodukhova O.G., 2013. Map II-7. “Seismic belts and zones of the Earth”. In: Atlas of seismotectonics in Central Asia. Beijing, p. 51.
49. Sobolev G.A., 1993. Fundamentals of Earthquake Prediction. Nauka, Moscow, 313 p. (in Russian) [Соболев Г.А. Основы прогноза землетрясений. М.: Наука, 1993. 313 с.].
50. Sobolev G.A., 2011. The Earthquake Predictability Concept Based on Dynamics of Seismicity in Case of Trigger Effect. IPE RAS, Moscow, 56 p. (in Russian) [Соболев Г.А. Концепция предсказуемости землетрясений на основе динамики сейсмичности при триггерном воздействии. М.: ИФЗ РАН, 2011. 56 с.].
51. Sobolev G.A., Ponomarev A.V., 2003. The Physics of Earthquakes and Precursors. Nauka, Moscow, 270 p. (in Russian) [Соболев Г.А., Пономарев А.В. Физика землетрясений и предвестники. М.: Наука, 2003. 270 с.].
52. Sobolev G.A., Shpettsler Kh., Kol’tsov A.V., 1991. Some properties of unstable slip along uneven fracture. In: G.A. Sobolev (Ed.), Physics of rocks at high pressure. Nauka, Moscow, p. 97–108 (in Russian) [Соболев Г.А., Шпетцлер Х., Кольцов А.В. Некоторые свойства неустойчивого скольжения по неровному разрыву // Физика горных пород при высоких давлениях / Ред. Г.А. Соболев. М.: Наука, 1991. С. 97–108].
53. Stirling M.W., Wesnousky S.G., Shimazaki K., 1996. Fault trace complexity, cumulative slip, and the shape of the magnitude-frequency distribution for strike-slip faults: a global survey. Geophysical Journal International 124 (3), 833–868. http://dx.doi.org/10.1111/j.1365-246X.1996.tb05641.x.
54. Tapponier P., Molnar P., 1979. Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia and Baikal region. Journal of Geophysical Research 84 (B7), 3425–3459. http://dx.doi.org/10.1029/JB084iB07p03425.
55. Ulomov V.I., Shumilina L.S., 1999. Set of General Seismic Zoning Maps of the Russian Federation – OSR-97. Scale 1:8000000. Explanatory Note and a List of Cities and Towns Located in Regions of Seismic Hazard. UIPE, Moscow, 57 p. (in Russian) [Уломов В.И., Шумилина Л.С. Комплект карт общего сейсмического районирования территории Российской Федерации – ОСР-97. Масштаб 1:8000000. Объяснительная записка и список городов и населенных пунктов, расположенных в сейсмоопасных районах. М.: ОИФЗ, 1999. 57 с.].
56. Vostrikov G.A., 1994. Relationship between parameters of the recurrence curve, seismic flow and earthquake source. Proceedings of GIN RAS. Issue 482. GIN RAS, Moscow, 292 p. (in Russian) [Востриков Г.А. Связь параметров графика повторяемости, сейсмического течения и очага землетрясения. Труды ГИН РАН. Вып. 482. М.: ГИН РАН, 1994. 292 с.].
57. Wells D.G., Coppersmith K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America 84 (4), 974–1002.
58. Wesnousky S.G., Scholz C.H., Shimazaki K., Matsuda T., 1984. Integration of geological and seismological data for the analysis of seismic hazard: A case study of Japan. Bulletin of the Seismological Society of America 74 (2), 687–708.
59. Zavyalov A.D., 2006. Medium-Term Forecasting of Earthquakes: Fundamentals, Methods, Implementation. Nauka, Moscow, 254 p. (in Russian) [Завьялов А.Д. Среднесрочный прогноз землетрясений: основы, методика, реализация. М.: Наука, 2006. 254 с.].
Review
For citations:
Sherman S.I. TECTONOPHYSICAL SIGNS OF THE FORMATION OF STRONG EARTHQUAKE FOCI IN SEISMIC ZONES OF CENTRAL ASIA. Geodynamics & Tectonophysics. 2016;7(4):495-512. (In Russ.) https://doi.org/10.5800/GT-2016-7-4-0219