Preview

Geodynamics & Tectonophysics

Advanced search

SURFACE DEFORMATIONS NEAR THE BAIKAL–AMUR RAILWAY FROM DIFFERENTIAL SAR INTERFEROMETRY DATA

https://doi.org/10.5800/GT-2016-7-2-0209

Abstract

This paper presents SAR interferometric data obtained in the study of surface deformations of different origin within the Upper Angara-Muya interbasin link of the northeastern segment of the Baikal rift system, Russia. Differential SAR interferometry using images with small perpendicular baselines was applied in this geodynamical study. The potential of using ENVISAT/ASAR and ALOS/PALSAR data is discussed. New geodynamical data on recent strain patterns were obtained. The endogenous linear-localized and areal deformations were revealed in the influence zone of the active Muyakan fault. The origin of these deformations is discussed. The landslide that negatively affects the Baikal-Amur railway facilities is also studied. The use of SAR data for detailed study and monitoring of the landslide is discussed. It is confirmed that natural hazard in the study area is growing due to the ongoing landsliding.

About the Authors

M. A. Lebedeva
Institute of the Earth’s Crust, Siberian Branch of RAS
Russian Federation

Junior Researcher,

128 Lermontov street, Irkutsk 664033



V. A. Sankov
Institute of the Earth’s Crust, Siberian Branch of RAS; Irkutsk State University
Russian Federation

Candidate of Geology and Mineralogy, Head of Laboratory,

128 Lermontov street, Irkutsk 664033



A. I. Zakharov
Fryazino Branch of V.A. Kotel’nikov Institute of Radioengineering and Electronics of RAS
Russian Federation

Doctor of Physics and Mathematics,

1 Vvedensky square, Moscow region, Fryazino 141190



L. N. Zakharova
Fryazino Branch of V.A. Kotel’nikov Institute of Radioengineering and Electronics of RAS
Russian Federation

Candidate of Physics and Mathematics,

1 Vvedensky square, Moscow region, Fryazino 141190



References

1. Cumming I., Wong F., 2005. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Artech House Publishers, New York, 632 p.

2. Déverchère J., Houdry F., Solonenko N.V., Solonenko A.V., San’kov V.A., 1993. Seismicity, active faults and stress fields of the North Muya region, Baikal rift: New insights on the rheology of extended continental lithosphere. Journal of Geophysical Research 98 (B11), 19895–19912. http://dx.doi.org/10.1029/93JB01429.

3. Doser D.I., 1991. Faulting within the eastern Baikal rift as characterized by earthquake studies. Tectonophysics 196 (1–2), 109–139. http://dx.doi.org/10.1016/0040-1951(91)90292-Z.

4. Elachi C., van Zyl J., 2006. Introduction to the Physics and Techniques of Remote Sensing. Second edition. John Wiley & Sons, New York, 616 p.

5. Franceschetti G., Lanari R., 1999. Synthetic Aperture Radar Processing. CRC Press, New York, 328 p.

6. Gabriel A.K., Goldstein R.M., 1988. Crossed orbit interferometry: theory and experimental results from SIR-B. International Journal of Remote Sensing 9 (5), 857–872. http://dx.doi.org/10.1080/01431168808954901.

7. Gabriel A.K., Goldstein R.M., Zebker H.A., 1989. Mapping Small Elevation Changes Over Large Areas: Differential Radar Interferometry. Journal of Geophysical Research 94 (B7), 9183–9191. http://dx.doi.org/10.1029/JB094iB07p09183.

8. Goldstein R.M., Engelhardt H., Kamb B., Frolich R.M., 1993. Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic ice stream. Science 262 (5139), 1525–1530. http://dx.doi.org/10.1126/science.262.5139.1525.

9. Golenetsky S.I., Misharina L.A., 1978. Seismisity and earthquake focal mechanisms in the Baikal rift zone. Tectonophysics 45 (1), 71–86. http://dx.doi.org/10.1016/0040-1951(78)90225-1.

10. Hanssen R.F., 2001. Radar Interferometry. Data Interpretation and Error Analysis. Delft University of Technology, Delft, Netherlands, 308 p.

11. Houdry-Lémont, F., 1994. Mécanismes de l’Extension Continentale dans le Rift Nord-Baikal, Siberie: Contrantes des Données d’Imagerie SPOT, de Terrain, de Sismologie et de Gravimétrie. Thése de doctorat de Université Pierre et Marie Curie Paris 6. Laboratoire de Géodynamique Sous-Marine, Obsernatoire Océanologique de Villefranche-surMer, 345 p.

12. Kartashov V.A., Zalutsky V.T., 2009 Some geodetic technologies of explorations on the East-Siberian railway. In: Innovative technologies for an efficient geospatial management of Earth resources. Proceedings of FIG and SSGA Workshop, Russia, Irkutsk–Listvyanka, 26 July 2009. Available from: https://www.fig.net/resources/proceedings/2009/lakebaikal_2009_comm6/ppt/kartashov_zalutsky_ppt.pdf.

13. Klees R., Massonnet D., 1999. Deformation measurements using SAR interferometry: potential and limitations. Geologie en Mijnbouw 77 (2), 161–176. http://dx.doi.org/10.1023/A:1003594502801.

14. Kuzmin Yu.O., 2013. Recent geodynamics of the faults and paradoxes of the rates of deformation. Izvestiya, Physics of the Solid Earth 49 (5), 626–642. http://dx.doi.org/10.1134/S1069351313050029.

15. Massonnet D., Rabaute T., 1993. Radar interferometry: limits and potential. IEEE Transactions on Geoscience and Remote Sensing 31 (2), 455–464. http://dx.doi.org/10.1109/36.214922.

16. Osokina D.N., 2010. Fields of local stresses of different levels and second order fractures close to the off of a strike slip fault. Izvestiya, Physics of the Solid Earth 46 (5), 419–432. http://dx.doi.org/10.1134/S1069351310050071.

17. Peltzer G., Hudnut K.W., Feigl K.L., 1994. Analysis of coseismic surface displacement gradients using radar interferometry: New insights into the Landers earthquake. Journal of Geophysical Research 99 (B11), 21971–21981. http://dx.doi.org/10.1029/94JB01888.

18. Petit C., Meyer B., Gunnell Y., Jolivet M., San’kov V., Strak V., Gonga-Saholiariliva N., 2009. The height of faceted spurs, a proxy for determining long-term throw rates on normal faults: evidence from the North Baikal Rift System, Siberia. Tectonics 28 (6), TC6010. http://dx.doi.org/10.1029/2009TC002555.

19. San’kov V., Déverchère J., Gaudemer Y., Houdry F., Filippov A., 2000. Geometry and rate of faulting in the North Baikal Rift, Siberia. Tectonics 19 (4) 707–722. http://dx.doi.org/10.1029/2000TC900012.

20. San’kov V.A., Dneprovsky Yu.I., Kovalenko S.N., Bornyakov S.A., Gileva N.A., Gorbunova N.G., 1991. Faults and Seismicity of the North Muya Geodynamic Test Area. Nauka, Novosibirsk, 111 p. (in Russian) [Саньков В.А., Днепровский Ю.И., Коваленко С.Н., Борняков С.А., Гилева Н.А., Горбунова Н.Г. Разломы и сейсмичность Северо-Муйского геодинамического полигона. Новосибирск: Наука, 1991. 111 с.].

21. Sandwell D.T., Myer D., Mellors R., Shimada M., Brooks B., Foster J., 2008. Accuracy and resolution of ALOS interferometry: vector deformation maps of the Father's Day intrusion at Kilauea. IEEE Transactions on Geoscience and Remote Sensing 46 (11), 3524–3534. http://dx.doi.org/10.1109/TGRS.2008.2000634.

22. Sherman S.I., Levi K.G., Bornyakov S.A., 1980. Block tectonics of the Muyakan-Angarakan interfluve area and some seismicity problems. In: M.M. Odintsov (Ed.), Seismotectonics and Seismicity of the BAM Construction Area. Nauka, Moscow, p. 43–56 (in Russian) [Шерман С.И., Леви К.Г., Борняков С.А. Блоковая тектоника Муякан-Ангараканского междуречья и некоторые вопросы сейсмичности // Сейсмотектоника и сейсмичность района строительства БАМ. М.: Наука, 1980. С. 43–56].

23. Solonenko V.P., Mandelbaum M.M. (Eds.), 1985. Geology and Seismicity of the BAM Zone. Seismogeology and Seismic Zoning. Nauka, Novosibirsk, 190 p. (in Russian) [Геология и сейсмичность зоны БАМ. Сейсмогеология и сейсмическое районирование / Ред. В.П. Солоненко, М.М. Мандельбаум. Новосибирск: Наука, 1985. 190 с.].

24. Soloviev S.L. (Ed.), 1985. Geology and Seismicity of BAM Zone. Seismicity. Nauka, Novosibirsk, 190 p. (in Russian) [Геология и сейсмичность зоны БАМ. Сейсмичность / Ред. С.Л. Соловьев. Новосибирск: Наука, 1985. 190 с.].

25. Stramondo S., Chini M., Bignami C., Salvi S., Atzori S., 2011. X-, C-, and L-Band DInSAR investigation of the April 6, 2009, Abruzzi Earthquake. IEEE Geoscience and Remote Sensing Letters 8 (1), 49–53. http://dx.doi.org/10.1109/LGRS.2010.2051015.

26. Trzhtsinsky Yu.B., Kozyreva E.A., Laperdin V.K., Zalutsky V.T., Popov O.Yu., 2004. Engineering-geological features of the Kazankan segment of the BAM. In: V.I. Osipov (Ed.), Sergeev’s readings, Issue 6. Engineering geology: state-of-theart and future prospects. Materials of the annual session of RAS Scientific Council on problems of Geoecology, Engineering Geology and Hydrogeology. GEOS, Moscow, p. 438–442 (in Russian) [Тржцинский Ю.Б., Козырева Е.А., Лапердин В.К., Залуцкий В.Т., Попов О.Ю. Инженерно-геологические особенности Казанканского участка БАМ // Сергеевские чтения. Вып. 6. Инженерная геология и охрана геологической среды. Современное состояние и перспективы развития. Материалы годичной сессии Научного совета РАН по проблемам геоэкологии, инженерной геологии и гидрогеологии / Ред. В.И. Осипов. М.: ГЕОС, 2004. С. 438–442].

27. Zalutsky V.T., 2007. Monitoring of deformations in railroad beds using surface laser scanning. In: Problems and prospects of the Russian railroad survey, design, construction and operation. Proceeding of the All-Russian Researchto-Practice Conference (Irkutsk, Russia, October 10–11, 2007). Vol. 2. Irkutsk state transport university, Irkutsk, p. 48–53 (in Russian) [Залуцкий В.Т. Мониторинг деформаций земляного полотна железных дорог с помощью наземного лазерного сканирования // Проблемы и перспективы изысканий, проектирования, строительства и эксплуатации Российских железных дорог: Материалы Всероссийской научно-практической конференции (Иркутск, 10–11 октября 2007 г.). Иркутск: ИрГУПС, 2007. Т. 2. C. 48–53].


Review

For citations:


Lebedeva M.A., Sankov V.A., Zakharov A.I., Zakharova L.N. SURFACE DEFORMATIONS NEAR THE BAIKAL–AMUR RAILWAY FROM DIFFERENTIAL SAR INTERFEROMETRY DATA. Geodynamics & Tectonophysics. 2016;7(2):315-328. https://doi.org/10.5800/GT-2016-7-2-0209

Views: 1653


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)