Preview

Geodynamics & Tectonophysics

Advanced search

RIEDEL MEGASHEARS R' AND THE TREND TO GRAVITATIONAL EQUILIBRIUM AS MAIN FACTORS OF TSUNAMIGENIC EARTHQUAKES

https://doi.org/10.5800/GT-2014-5-4-0164

Abstract

An earthquake source is characterized by two nodal planes oriented parallel to two planes of maximum shear stresses (Fig. 1, left). A rapid displacement of the shear type (in mechanical, rather than in the geological meaning) occurs along one of the planes and causes an earthquake.

The concept of plate tectonics with one of its main components, subduction zones, provides, at first sight, the unique opportunity to select one of the two nodal planes – a gently dipping plane which is parallel to the roof of the subducting oceanic plate (Fig. 1, bottom right). The other nodal plane that is steeply dipping in the opposite direction (Fig. 1, top right) seems ‘unpromising’, considering the aspect of seismicity, for two reasons. First, displacement along this plate is contrary to the general direction of oceanic plate subduction. Secondly, such displacement is directed against the direction of gravity, which is energetically disadvantageous.

However, it should be taken into account that in the stress field of the subduction zone, as in any stress field, the two above-mentioned maximum shear stresses have equal values. At the same time, it is the sub-vertical displacement that excites rapid uplifting of the seabed which causes a tsunami. Researchers who support the traditional choice of a gently dipping nodal plane have to reckon with it and therefore create complex models, such as the ‘splay fault’ model that seem most successful, though being quite complicated and controversial (Figs. 56 and 57).

In our opinion, the geological reality is more adequately refelected by the geological and geophysical model shown in Fig. 1 (right). It is based on the wide range of information and assumes that both nodal planes are equivalent and interchange in generation of strong earthquakes.

The aim of this article is to consider this model in terms of tectonophysics. For this purpose, earthquake sources indicated on (Fig. 1, right) are classified as Riedel megashears, R (bottom right) and R' (top right top), which occur in the geodynamic setting of sub-horizontal shearing (in this case, subduction of the oceanic plate) along the sub-horizontal plane (Fig. 3). This situation is one of five elementary geodynamic settings (see Fig. 2). It is similar in everything, except the position of the shearing plane, with the geodynamic setting of horizontal shearing along the vertical plane (Fig. 4). Riedel shears formed in the latter situation were subject to the most detailed studies using purpose-made devices (Fig. 5, and 6). This study gave grounds to conclude that Riedel shears, R are developed much better than shears R'.

Our experiments (Fig. 7) confirm the above conclsuion. Moreover, it is revealed that shears R', that develop poorly in samples made of wet clay (Figs. 8, 9, 12, and 13), cannot develop in a granulated medium such as a mixture of sand and solid oil (Fig. 10, 11, and 14) and do not develop in other granulated media (Fig. 17), which are similar to the block structure of the uppermost crust (Fig. 18–20). In such mediums, shears R result from joining of small echeloned tension joints. Such style of shear formation has been explained in various waysare proposed (Fig. 15–16), and the main point of the explanations is joining of small tensile fractures by means of larger shear fractures. However, our experiments with wet clay (Fig. 31–35) show that even artificially created ’Riedel shears’ show nearly a zero extension under loading followed by shearing, which casts doubt on possibile occurence ofshear fractures as such without involvement of smaller tenson joints.

While being not satisfied with the results of our experiments, we carried out numerical simulations of the evolution of Riedel shears, R and R' for different values of lithostatic pressure (which is actually impossible in experiments with equivalent materials) and angles of shearing. (See Fig. 41 for real values of lithostatic pressure and tangential stress with reference to depths of tsunamigenic earthquakes). The opinion voiced by several authors was confirmed – the effect of unequal rotation of the shears during the subsequent shearing is highly significant and therefore ‘subversive’ for shears R'. This simulation was carried out under the assumption of emerging of shears without participation of smaller tension joints (although this assumption is not consistent with the results of our experiments, see above) (Fig. 21–30). Numerical simulation was problematic for the case involving tension joints and had to bereplaced by experiments with thephysical modelwhere small tension joints were artificially created and arranged in an echelon pattern along the tracks of future shear fractures, and small joints and tracks were oriented in accordance with the orientation of the vector of principal stresses that occurred in the model made of wet clay due to shearing (Fig. 36–40).

The results of both physical and numerical modeling have led to a definite conclusion that Riedel shears R are evidently dominating over shears R' in a variety of conditions (except for the initial stages of shearing in the samples of wet clay, which, by virtue of internal connections between clay particles, gives a less adequate representation of the natural block-type geological medium than granular materials).

This conclusion is in contradiction with the well-justified model combining geological and geophysical indicators of the formation of foci of strong tsunamigenic and non-tsunamigenic earthquakes (see Fig. 1) which are identified (see above) as megashears R and R', respectively. This contradiction is eliminated if we take into account the sharp gravitational disbalance of the island arc – trench ‘tectonopair’ created by subduction. This disbalance is expressed in the contrasting relief and in contrasting gravity anomalies in this ‘tektonopair’ (Fig. 43). We assumed that nature cannot be ‘tolerant’ for a long time, and found an opposite natural reaction (mainly in the case of the Tohoku earthquake in Japan on March 11, 2011) – subsidense of the Earth surface segment adjacent to the island arc and uplift of the surface segment adjacent to the trench, accompanied by horizontal movement of the material from the arc towards the trench (Figs. 47–54, and 58). This process has a trend of declining relief contrast between the arc and the trough and inversion of the sign of gravity anomalies (Figs. 44–46). And it is the boundary between these regions of the Earth surface subsidence and uplifting, to which tsunamigenic earthquake are confined at reverse faults of the seabed surface with the raised wall facing the trough (Fig. 42). This means that the tendency to gravitational equilibrium realized the potential of forming megashears R', that develop much worse than shears R (or do not develop at all) in other natural and modelled settings.

The conclusion that foci of tsunamigenic earthquakes R' are confined to the margin between sibsiding and uplifting regions challenges the traditional concept that a tsunami is a consequence of a sharp rise in the seabed in the local uplift area. A slashing subsidence of a vast area of the seabed entails an equally sudden sharp lowering of the sea level and the retreat of the sea from the coast. Such a phenomena was observed by unlucky tourists at the Phuket island just before the Sumatra tsunami. In a similar way, a sudden uplifting of the seabed in the area adjacent to the trough causes a corresponding rise of the sea level. In such cases, masses of water, that are much more mobile than terrestrial masses, are subject to the gravitational disequilibrium, rush towards the shore and cause a tsunami (Fig. 55).

A consolidated model of tsunamigenic earthquakes resulting from the trend to restoration of the gravity equilibrium is shown in Fig. 63. According to our conclusions, it is recommended that tsunamigenic earthquakes forecasting should be based on continuous high-precision and high-frequency monitoring of GPS and gravitational field measurements and aimed at early detection of a tendency to inversion of tectonic movements and gravity anomalies in the island arc – trench ‘tectonopairs’.

Observations of the so-called seismic ‘nails’ (Figs. 59–61) should also be conducted. Seismic ‘nails’ can be interpreted as incipient Riedel megashears R', consisting of smaller tension megafractures (similar to those shown in Figs. 10, 11, 14, and 17), which are viewed as precursors of a strong earthquake.

About the Authors

M. A. Goncharov
Geological Faculty of Lomonosov Moscow State University, Moscow, Russia
Russian Federation

Doctor of Geology and Mineralogy
Lomonosov Moscow State University
Leninskie Gory, Moscow 119991, GSP-1, Russia
Tel. +7(495) 9391912



E. A. Rogozhin
Geological Faculty of Lomonosov Moscow State University, Moscow, Russia Schmidt Institute of Physics of the Earth RAS, Moscow, Russia
Russian Federation

Doctor of Physics and Mathematics, Deputy Director
The Schmidt Institute of Physics of the Earth RAS
10 Bol’shaya Gruzinskaya street, Moscow D-242 123995, GSP-5, Russia



N. S. Frolova
Geological Faculty of Lomonosov Moscow State University, Moscow, Russia
Russian Federation

Candidate of Geology and Mineralogy
Lomonosov Moscow State University
Leninskie Gory, Moscow 119991, GSP-1, Russia



P. N. Rozhin
Geological Faculty of Lomonosov Moscow State University, Moscow, Russia
Russian Federation

PhD Student
Lomonosov Moscow State University, Geological Faculty
Leninskie Gory, Moscow 119991, GSP-1, Russia



V. S. Zakharov
Geological Faculty of Lomonosov Moscow State University, Moscow, Russia
Russian Federation

Candidate of Physics and Mathematics
Lomonosov Moscow State University, Geological Faculty
Leninskie Gory, Moscow 119991, GSP-1, Russia



References

1. Cho M., Kim H., Lee Y., Horie K., Hidaka H., 2008. The oldest (ca. 2.51 Ga) rock in South Korea: U-Pb zircon age of a to-nalitic migmatite, Daeijak Island, Western Gyeonggi Massif. Geosciences Journal 12 (1), 1–6. http://dx.doi.org/10.1007/ s12303-008-0001-1.

2. Fujii Y., Satake K., Sakai S., Shinohara M., Kanazawa T., 2011. Tsunami source of the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space 63 (7), 815–820. http://dx.doi.org/10.5047/eps.2011.06.010.

3. Gintov O.B., 2005. Field Tectonophysics and Its Application to Studies of Deformations of the Earth`s Crust in Ukraine. Feniks, Kiev, 572 p. (in Russian) [Гинтов О.Б. Полевая тектонофизика и ее применение при изучении деформаций земной коры Украины. Киев: Феникс, 2005. 572 с.].

4. Gintov O.B., Isay V.M., 1988. Tectonophysical Studies of Faults of Consolidated Crust. Naukova Dumka, Kiev, 228 p. (in Russian) [Гинтов О.Б., Исай В.М. Тектонофизические исследования разломов консолидированной коры. Киев: Наукова думка, 1988. 228 с.].

5. Goncharov M.A., 2010. Applicability of similarity conditions to analogue modelling of tectonic structures. Geodynamics & Tectonophysics 1 (2), 148–168 (in Russian) [Гончаров М.А. Реальная применимость условий подобия при физиче-ском моделировании тектонических структур // Геодинамика и тектонофизика. 2010. Т. 1. № 2. С. 148–168]. http://dx.doi.org/10.5800/GT-2010-1-2-0012.

6. Goncharov M.A., Frolova N.S., Rozhin P.N., Selezneva N.N., 2007. The problem of revealing the absolute kinematics of the opposite walls of faults. Moscow University Geology Bulletin 62 (4), 220–228. http://dx.doi.org/10.3103/S014587520 7040023.

7. Goncharov M.A., Frolova N.S., Rozhin P.N., Selezneva N.N., 2010. Riedel shears R and R' and the problem of the genesis of tsunamigenic earthquakes. In: Physical basis of forecasting of rock destruction. Institute of Physics of the Earth RAS, Moscow, p. 34–35 (in Russian) [Гончаров М.А., Фролова Н.С., Рожин П.Н., Селезенева Н.Н. Cколы Риделя R и R’ и проблема генезиса цунамигенных землетрясений // Физические основы прогнозирования разрушения горных пород. М.: ИФЗ РАН, 2010. С. 34–35.].

8. Goncharov M.A., Frolova N.S., Zakharov V.S., Rozhin P.N., 2011. Tsunamigenic earthquakes in subduction zones as a result of rapid formation of Riedel megashears R' by jointing of an echelon disposed tensile megajoints. In: Problems of seismotectonics. Publishing and Polygraphic Centre "Nauchnaya Kniga", Voronezh, p. 184–188 (in Russian) [Гончаров М.А., Фролова Н.С., Захаров B.C., Рожин П.Н. Цунамигенные землетрясения в зонах субдукции как результат быстротечного формирования мегасколов Риделя R'при объединении кулисообразно расположенных мегатрещин отрыва // Проблемы сейсмотектоники. Воронеж: Издательско-полиграфический центр «Научная книга», 2011. С. 184–188].

9. Goncharov M.A., Frolova N.S., Zakharov V.S., Rozhin P.N., 2012. Riedel megashears R' as a possible cause of tsunamigenic earthquakes in subduction zones. In: Tectonophysics and urgent problems of Earth science. V. 2. Institute of Physics of the Earth RAS, Moscow, p. 105–109 (in Russian) [Гончаров М.А., Фролова Н.С., Захаров В.С., Рожин П.Н. Мега-сколы Риделя R’ как возможная причина цунамигенных землетрясений в зонах субдукции // Тектонофизика и актуальные вопросы наук о Земле. М.: ИФЗ РАН, 2012. Т. 2. С. 105–109].

10. Goncharov M.A., Talitskii V.G., 1998. Do shear joints originate from shearing? Moscow University Geology Bulletin 53 (3), 1–6.

11. Goncharov M.A., Talitsky V.G., Frolova N.S., 2005. Introduction to Tectonophysics. Knizhnyj Dom “Universitet”, Moscow, 496 p. (in Russian) [Гончаров М.А., Талицкий В.Г., Фролова Н.С. Введение в тектонофизику. М.: Книжный дом «Университет», 2005. 496 с.].

12. Graveleau F., Malavieille J., Dominguez S., 2012. Experimental modelling of orogenic wedges: a review. Tectonophysics 538–540, 1–66. http://dx.doi.org/10.1016/j.tecto.2012.01.027.

13. Gravity Field and Steady-State Ocean Circulation Explorer (GOCE), 2011. Available from: http://www.esa.int/esaLP/ LPgoce.html.

14. Gravity Recovery and Climate Experiment (GRACE), 2005. Available from: http://www.csr.utexas.edu/grace/.

15. Gufeld I.L., 2012. Geological consequences of amorphization of the lithosphere and upper mantle structures caused by hydrogen degassing. Geodynamics & Tectonophysics 3 (4), 417–435 (in Russian) [Гуфельд И.Л. Геологические следствия аморфизации структуры литосферы и верхней мантии, вызванные водородной дегазацией // Геодинамика и тектонофизика. 2012. Т. 3. № 4. С. 417–435]. http://dx.doi.org/10.5800/GT-2012-3-4-0083.

16. Gutscher M.-A., Peacock S.M., 2003. Thermal models of flat subduction and the rupture zone of great subduction earthquakes. Journal of Geophysical Research 108 (B1), 2009. http://dx.doi.org/10.1029/2001JB000787.

17. Gzovsky M.V., 1959. Highlights of tectonophysics and tectonics of Bajdgansaj anticlinorium. Part I, II. Publishing House of AS of USSR, Moscow, 255 p. (in Russian) [Гзовский М.В. Основные вопросы тектонофизики и тектоника Байджан-сайского антиклинория. Ч. I, II. М.: Изд-во АН СССР, 1959. 255 с.].

18. Gzovsky M.V., 1975. Basics of tectonophysics. Nauka, Moscow, 536 p. (in Russian) [Гзовский М.В. Основы тектонофизики. М.: Наука, 1975. 536 с.].

19. Han S.-C., Shum C. K., Bevis M., Kuo C.Y., 2006. Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake. Science 313 (5787), 658–662. http://dx.doi.org/10.1126/science.1128661.

20. Heidarzadeh M., 2011. Major tsunami risks from splay faulting. Chapter 5. In: Nils-Axel Mãrner (Ed.). The Tsunami Threat – Research and Technology. InTech, Rijeka, Croatia, p. 67–80. http://dx.doi.org/10.5772/13375.

21. Huene von R., Klaeschen D., Cropp B., Miller J., 1994. Tectonic structure across the accretionary and erosional parts of the Japan Trench margin. Journal of Geophysical Research 99 (B11), 22349–22361. http://dx.doi.org/10.1029/94JB01198.

22. Hyndman R.D., Wang K., 1993. Tectonic constraints on the zone of major thrust earthquake failure: the Cascadian subduction zone. Journal of Geophysical Research 98 (B2), 2039–2060. http://dx.doi.org/10.1029/92JB02279.

23. Incorporated Research Institutions of Seismology (IRIS), 2012. Available from: http://www.iris.edu/hq/programs/education_ and_outreach/animations#FM.

24. Kamiyama M., Sugito M., Kuse M., 2012. Precursor of crustal movements before the 2011 Great East Japan Earthquake. In: Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1–4, 2012, Tokyo, Japan. The Earthquake Engineering Online Archive. Available from: http://nisee. berkeley.edu/documents/elib/www/documents/201204/PISELL/kamiyama-crustal-forecast.pdf

25. Katsumata K., Ichiyanagi M., Miwa M., Kasahara M., 1995. Aftershock distribution of the October 4, 1994 Mw8.3 Kurile Islands earthquake determined by a Local Seismic Network in Hokkaido, Japan. Geophysical Research Letters 22 (11), 1321–1324. http://dx.doi.org/10.1029/95GL01316.

26. Koronovsky N.V., Gogonenkov G.N., Goncharov M.A., Timurziev A.I., Frolova N.S., 2009. Role of shear along horizontal plane in the formation of helicoidal structures. Geotectonics 43(5), 379–391. http://dx.doi.org/10.1134/S0016852109 050033.

27. Lekkas E., Andreadakis E., Kostaki I., Kapourani E., 2011. Critical factors for run-up and impact of the Tohoku earthquake Tsunami (Japan 11 March 2011). International Journal of Geosciences 2 (3), 310–317. http://dx.doi.org/10.4236/ijg. 2011.23033.

28. Map of Chilean earthquake coseismic displacement derived from GPS data. GPS World 2010. Available from: http://www. sciencedaily.com/releases/2010/03/100308132043.htm.

29. Nettles M., Ekstrom G., Koss H., 2011. Centroid-moment-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks. Earth, Planets and Space 63 (7), 519–523. http://dx.doi.org/10.5047/ eps.2011.06.009.

30. Pogorelov V.V., 2011. Tectonophysical analysis of stress of the Earth’s crust of the Sunda seismic active area. Author's abstract of PhD thesis. Institute of Physics of the Earth RAS, Moscow, 26 p. (in Russian) [Погорелов В.В. Тектонофизический анализ напряжений земной коры Зондской сейсмоактивной области: Автореф. дис. … канд. физ.-мат. наук. М.: ИФЗ РАН, 2011. 26 с.].

31. Pollitz F., 2011. Preliminary geodetic slip model of the 2011 M9.0 Tohoku-chiho Taiheiyo-oki Earthquake. USGS publication. Available from: http://earthquake.usgs.gov/earthquakes/world/japan/031111_M9.0prelim_geodetic_slip.php.

32. Ramsay J.G., Huber M., 1983. The Techniques of Modern Structural Geology. V. 1: Strain Analysis. Academic Press, Lon-don, 307 p.

33. Rao G., Lin A., Yan B., Jia D., Wu X., Ren Z. , 2011. Co-seismic Riedel shear structures produced by the 2010 Mw=6.9 Yushu earthquake, central Tibetan Plateau, China. Tectonophysics 507 (1–4), 86–94. http://dx.doi.org/10.1016/j.tecto.2011. 05.011.

34. Rebetsky Yu.L., 2012. Crustal stress state along the coast of Honshu (Japan) before the earthquake 11.03.2011 (Mw = 9.0). In: Tectonophysics and urgent problems of Earth science. V. 2. Institute of Physics of the Earth RAS, Moscow, p. 160–168 (in Russian) [Ребецкий Ю.Л. Напряженное состояние земной коры вдоль побережья о. Хонсю (Япония) перед землетрясением 11.03.2011 (Mw=9.0) // Тектонофизика и актуальные вопросы наук о Земле. М.: ИФЗ РАН, 2012. Т. 2. С. 160–168].

35. Rebetsky Yu.L., Mikhailova A.V., Sim L.A., 2008. Rupture structures in depth of zones of shearing. Results of tectonophysical modelling. In: Problems of tectonophysics. Publishing House of the Institute of Physics of the Earth, Moscow, p. 103– 140 (in Russian) [Ребецкий Ю.Л., Михайлова А.В., Сим Л.А. Структуры разрушения в глубине зон сдвигания. Результаты тектонофизического моделирования // Проблемы тектонофизики. К сорокалетию создания М.В. Гзовским лаборатории тектонофизики в ИФЗ РАН. М.: ИФЗ РАН, 2008. С. 103–140].

36. Rebetsky Yu.L., Tatevossian R.E., 2013. Rupture propagation in strong earthquake sources and tectonic stress field. Bulletin de la Société Géologique de France 184 (4–5), 335–346. http://dx.doi.org/10.2113/gssgfbull.184.4-5.335.

37. Rice J. R., 1980. The mechanics of earthquake rupture. In: A. Dziewonski and E. Boschi (Eds.), Physics of the Earth's Interior. North Holland, Amsterdam, p. 555–649.

38. Rogozhin E.A., 2011. March 11, 2011 M 9.0 Tohoku earthquake in Japan: tectonic setting of source, macroseismic, seismological, and geodynamic manifestations. Geotectonics 45 (5), 337–348. http://dx.doi.org/10.1134/s0016852111050025.

39. Rogozhin E.A., 2012a. Essays on Regional Seismotectonics. Institute of Physics of the Earth RAS, Moscow, 339 p. (in Russian) [Рогожин Е.А. Очерки региональной сейсмотектоники. М.: ИФЗ РАН, 2012. 339 с.].

40. Rogozhin E.A., 2012b. Application of tectonophysical approaches in solution of seismotectonic problems. In: Tectonophysics and urgent problems of Earth science. V. 2. Institute of Physics of the Earth RAS, Moscow, p. 169–172 (in Russian) [Рогожин Е.А. Применение тектонофизических подходов в решении сейсмотектонических задач // Тектонофизика и актуальные вопросы наук о Земле. Т. 2. М.: ИФЗ РАН, 2012. С. 169–172].

41. Rogozhin E.A., Zakharova A.I., 2000. Geodynamic position of the 1997 Kronotskii Earthquake Source, Eastern Kamchatka.

42. Izvestiya, Physics Solid Earth 36 (5), 369–374.

43. Rogozhin E.A., Zakharova A.I., 2006. Seismotectonics of source zones of tsunamigenic earthquakes. Geofizicheskiye Issledovaniya 6, 3–12 (in Russian) [Рогожин Е.А., Захарова А.И. Сейсмотектоника очаговых зон цунамигенных землетря-сений // Геофизические исследования. 2006. Вып. 6. С. 3–12].

44. Rozhin P.N., 2012. Influence of isostatic balance factor on formation of tsunamigenic earthquake focuses in subduction zones. In: SWorld Scientific researches and their practical application. Modern state and ways of development 35, p. 60–66 (in Russian) [Рожин П.Н. Влияние фактора изостатического равновесия на формирование очагов цунамигенных землетрясений в зонах субдукции // Сборник научных трудов SWorld по материалам международной научно-практической конференции. Т. 35. 2012. С. 60–66].

45. Rozhin P.N., 2013a. Generation of Riedel shears R and R' and their relationship with tsunamigenic earthquakes. Author's abstract of PhD thesis. Lomonosov Moscow State University, Moscow, 25 p. (in Russian) [Рожин П.Н. Генерация сколов Риделя R и R′ и их связь с цунамигенными землетрясениями: Автореф. дис. ... канд. геол.-мин. наук. М.: МГУ,

46. a. 25 с.].

47. Rozhin P.N , 2013b. The influence of isostatic equilibrium on the formation of the sources of tsunamigenic earthquakes. Moscow University Geology Bulletin 68 (2), 118–122. http://dx.doi.org/10.3103/S0145875213020099.

48. Rozhin P.N., Selezeneva N.N., 2009. Different evolution of Riedel shears R and R’ in connection with the problem of the genesis of tsunamigenic earthquakes. In: Modern tectonophysics. Methods and Results. Institute of Physics of the Earth RAS, Moscow, p. 195–202 (in Russian) [Рожин П.Н., Селезенева Н.Н. Различная эволюция сколов Риделя R и R' в связи с проблемой генезиса цунамигенных землетрясений // Современная тектонофизика. Методы и результаты. М.: ИФЗ РАН, 2009. С. 195–202].

49. Scholz C.H., 1990. The Mechanics of Earthquakes and Faulting. Cambridge University Press, Cambridge, UK, 439 p.

50. Seminsky K.Zh., 2003, Internal Structure of Continental Fault Zones. Tectonophysical Aspect. Geo Branch, Publishing House of SB RAS, Novosibirsk, 244 p. (in Russian) [Семинский К.Ж. Внутренняя структура континентальных разломных зон. Тектонофизический аспект. Новосибирск: Изд-во СО РАН, Филиал «Гео», 2003. 244 с.].

51. Seminsky K.Zh., Gladkov A.S., Lounina O.V., Tougarina M.A., 2005. Internal Structure of Continental Fault Zones. Applied Aspect. Geo Branch, Publishing House of SB RAS, Novosibirsk, 293 p. (in Russian) [Семинский К.Ж., Гладков А.С., Лунина О.В., Тугарина М.А. Внутренняя структура континентальных разломных зон. Прикладной аспект. Новосибирск: Изд-во СО РАН, Филиал «Гео», 2005. 293 с.].

52. Sherman S.I., Seminsky K.Zh., Bornyakov S.A. et al., 1991. Faulting in the Lithosphere. Shear Zones. Nauka, Siberian Branch, Novosibirsk, 262 p. (in Russian) [Шерман С.И., Семинский К.Ж., Борняков С.А. и др. Разломообразование в литосфере. Зоны сдвига. Новосибирск: Наука, Сибирское отделение, 1991. 262 с.].

53. Shikotan earthquake of 1994. Epicentral monitoring and focus of earthquake, 1995. The federal system of seismological observation and earthquake prediction. Information-analytical bulletin. The special issue. Moscow, 142 p. (in Russian) [Шикотанское землетрясение 1994 г. Эпицентральные наблюдения и очаг землетрясения // Федеральная система сейсмологических наблюдений и прогноза землетрясений. Информационно-аналитический бюллетень. 1995. Спец. вып. М., 142 с.].

54. Stavrogin A.N., Protosenya A.G., 1979. Rock Plasticity. Nedra, Moscow, 301 p. (in Russian) [Ставрогин А.Н., Протосеня А.Г. Пластичность горных пород. М.: Недра, 1979. 301 с.].

55. Stefanov Yu.P., 2009. Mathematical methods and results of numerical simulation of deformation and failure of rocks. In: Modern tectonophysics. Methods and results. Institute of Physics of the Earth RAS, Moscow, p. 288–301 (in Russian) [Стефанов Ю.П. Математические методы и результаты численного моделирования деформации и разрушения горных пород // Современная тектонофизика. Методы и результаты. М.: ИФЗ РАН, 2009. С. 288–301].

56. Stoyanov S., 1977. The Mechanism of Fault Zones Formation. Nedra, Moscow, 144 p. (in Russian) [Стоянов С. Механизм

57. формирования разрывных зон. М.: Недра, 1977. 144 с.]. The Structure of the Bottom of the Sea of Okhotsk, 1981. Nauka, Moscow, 176 p. (in Russian) [Строение дна Охотского

58. моря. М.: Наука, 1981. 176 с.].

59. The World's Ocean. Vol. I. Geology and Tectonics of the Ocean. Catastrophic Events in the Ocean, 2013. Nauchny Mir, Moscow, 644 p. (in Russian) [Мировой океан. Т. I. Геология и тектоника океана. Катастрофические явления в оке-ане. М.: Научный мир, 2013. 644 с.].

60. Tsuji T., Ito Y., Kido M., Osada Y., Fujimoto H., Ashi J., Kinoshita M. Matsuoka T., 2011. Potential tsunamigenic faults of the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space 63 (7), 831–834. http://dx.doi.org/10. 5047/eps.2011.05.028.

61. Vadkovsky V.N., 1996. Nature and mechanism of seismic ‘nails’. Lomonosov Conference 1996 Abstracts, p. 63–64 (in Russian) [Вадковский В.Н. Природа и механизм сейсмических «гвоздей» // Ломоносовские чтения 1996 г.: Тезисы докладов. М., 1996. C. 63–64].

62. Vadkovsky V.N., 2012. Subvertical clusters of earthquake hypocenters – seismic ‘nails’. Vestnik ONZ RAN 4, NZ1001 (in Russian) [Вадковский В.Н. Субвертикальные скопления гипоцентров землетрясений – сейсмические «гвозди» // Вестник ОНЗ РАН. 2012. Т. 4. NZ1001]. http://dx.doi.org/10.2205/2012NZ000110.

63. Vigny C., Simons W.J.F., Abu S., Bamphenyu R., Satirapod C., Choosaku, N., Surabaya C., Socquet A., Omar K., Abi- din H.Z., Ambrosius B.A.C., 2005. Insight into the 2004 Sumatra-Andaman earthquake from GPS measurements in southeast Asia. Nature 436 (7048), 201–206. http://dx.doi.org/10.1038/nature03937.

64. Wang L., Shum C. K., Simons F., Tapley B., Dai C., 2012. Coseismic and postseismic deformation of the 2011 Tohoku-Oki earthquake constrained by GRACE gravimetry. Geophysical Research Letters 39 (7), L07301. http://dx.doi.org/10.1029/ 2012GL051104.

65. Wells D.L., Coppersmith K.J., 1994. New empirical relationships among magnitude rupture length rupture width rupture area, and surface displacement. Bulletin of the Seismological Society of America 84 (4), 974–1002.

66. Zakharov V.S., 2013. On the mechanism of the generation of seismic ‘nails’. Moscow University Geology Bulletin 68 (5),

67. –288. http://dx.doi.org/10.3103/S0145875213050086.

68. Zakharov V.S., Karpenko A.I., Zaviyalov S.P. 2013. Seismic nails in various geodynamic conditions. Moscow University

69. Geology Bulletin 68 (1), 10–16. http://dx.doi.org/10.3103/S0145875213010080.


Review

For citations:


Goncharov M.A., Rogozhin E.A., Frolova N.S., Rozhin P.N., Zakharov V.S. RIEDEL MEGASHEARS R' AND THE TREND TO GRAVITATIONAL EQUILIBRIUM AS MAIN FACTORS OF TSUNAMIGENIC EARTHQUAKES. Geodynamics & Tectonophysics. 2014;5(4):939-991. (In Russ.) https://doi.org/10.5800/GT-2014-5-4-0164

Views: 1743


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)