DISCRETE DEFORMATION WAVE DYNAMICS IN SHEAR ZONES: PHYSICAL MODELLING RESULTS
https://doi.org/10.5800/GT-2016-7-2-0207
Abstract
Observations of earthquake migration along active fault zones [Richter, 1958; Mogi, 1968] and related theoretical concepts [Elsasser, 1969] have laid the foundation for studying the problem of slow deformation waves in the lithosphere. Despite the fact that this problem has been under study for several decades and discussed in numerous publications, convincing evidence for the existence of deformation waves is still lacking. One of the causes is that comprehensive field studies to register such waves by special tools and equipment, which require sufficient organizational and technical resources, have not been conducted yet.
The authors attempted at finding a solution to this problem by physical simulation of a major shear zone in an elastic-viscous-plastic model of the lithosphere. The experiment setup is shown in Figure 1 (A). The model material and boundary conditions were specified in accordance with the similarity criteria (described in detail in [Sherman, 1984; Sherman et al., 1991; Bornyakov et al., 2014]). The montmorillonite clay-and-water paste was placed evenly on two stamps of the installation and subject to deformation as the active stamp (1) moved relative to the passive stamp (2) at a constant speed. The upper model surface was covered with fine sand in order to get high-contrast photos. Photos of an emerging shear zone were taken every second by a Basler acA2000-50gm digital camera. Figure 1 (B) shows an optical image of a fragment of the shear zone. The photos were processed by the digital image correlation method described in [Sutton et al., 2009]. This method estimates the distribution of components of displacement vectors and strain tensors on the model surface and their evolution over time [Panteleev et al., 2014, 2015].
Strain fields and displacements recorded in the optical images of the model surface were estimated in a rectangular box (220.00×72.17 mm) shown by a dot-and-dash line in Fig. 1, A. To ensure a sufficient level of detail in the analyses of the strain fields in each optical image, the selected area was covered with a uniform mesh (3.43×3.43 mm). In the zoomed-up images, the mesh was 32×32 pixels (a pixel of 0.107×0.107 mm). For each pair of optical images, we calculated cross-correlation functions of the intensity of pixels between pairs of the same size cells (Fig. 2). Directions and magnitudes of displacements of the cells were determined from displaced maximums of cross-correlation functions (
About the Authors
S. A. BornyakovRussian Federation
Candidate of Geology and Mineralogy, Senior Researcher
128 Lermontov street, Irkutsk 664033
I. A. Panteleev
Russian Federation
Candidate of Physics and Mathematics, Researcher;
1 Academician Korolev street, Perm 614013
A. A. Tarasova
Russian Federation
PhD student;
128 Lermontov street, Irkutsk 664033
References
1. Bornyakov S.A., Semenova N.V., 2011. Dissipative processes in fault zones (based on physical modeling results). Russian Geology and Geophysics 52 (6), 676–683. http://dx.doi.org/10.1016/j.rgg.2011.05.010.
2. Bornyakov S.A., Seminsky K.Z., Buddo V.Y., Miroshnichenko A.I., Cheremnykh A.V., Cheremnykh A.S., Tarasova A.A., 2014. Main regularities of faulting in lithosphere and their application (based on physical modeling results). Geodynamics & Tectonophysics 5(4), 823–861 (in Russian) [Борняков С.А., Семинский К.Ж., Буддо В.Ю., Мирошниченко А.И., Черемных А.В., Черемных А.С., Тарасова А.А. Основные закономерности разломообразования в литосфере (по результатам физического моделирования) // Геодинамика и тектонофизика. 2014. Т. 5. № 4. С. 823–861]. http://dx.doi.org/10.5800/GT-2014-5-4-0159.
3. Bykov V.G., 1999. Seismic Waves in Saturated Porous Rocks. Dal’nauka, Vladivostok, 108 p. (in Russian) [Быков В.Г. Сейсмические волны в пористых насыщенных породах. Владивосток: Дальнаука, 1999. 108 с.].
4. Bykov V.G., 2005. Strain waves in the Earth: theory, field data, and models. Geologiya i Geofizika (Russian Geology and Geophysics) 46 (11), 1158–1170.
5. Bykov V.G., 2015. Nonlinear waves and solitons in models of fault block geological media. Russian Geology and Geophysics 56 (5), 793–803. http://dx.doi.org/10.1016/j.rgg.2015.04.010.
6. Dooley T.P., Schreurs G., 2012. Analogue modelling of intraplate strike-slip tectonics: A review and new experimental results. Tectonophysics 574–575, 1–71. http://dx.doi.org/10.1016/j.tecto.2012.05.030.
7. Dubrovsky V.A., 1985. Tectonic waves. Izvestiya AN SSSR, Fizika Zemli (1), 29–33 (in Russian) [Дубровский В.А. Тектонические волны // Известия АН СССР, серия Физика Земли. 1985. № 1. С. 29–33].
8. Elsasser W., 1969. Convection and stress propagation in the upper mantle. In: The application of modern physics to the Earth and planetary. Wiley, New York, p. 223–246.
9. Gamburtsev A.G., 1992. Seismic Monitoring of the Lithosphere. Nauka, Moscow, 200 p. (in Russian) [Гамбурцев А.Г. Сейсмический мониторинг литосферы. М.: Наука, 1992. 200 с.].
10. Gershenzon N.I., Bykov V.G., Bambakidis G., 2009. Strain waves, earthquakes, slow earthquakes, and afterslip in the framework of the Frenkel Kontorova model. Physical Review E 79 (5), 056601. http://dx.doi.org/10.1103/Phys RevE.79.056601.
11. Guberman Sh.A., 1979. D waves and earthquakes. In: V.I. Keilis-Borok (Ed.), Theory and analysis of seismological observations. Computational seismology, vol. 12. Nauka, Moscow, p. 158–188 (in Russian) [Губерман Ш.А. D волны и землетрясения // Теория и анализ сейсмологических наблюдений / Ред. В.И. Кейлис-Борок. Вычислительная сейсмология. Вып. 12. М.: Наука, 1979. C. 158–188].
12. Gzovsky М.V., 1975. Fundamentals of Tectonophysics. Nauka, Moscow, 536 p. (in Russian) [Гзовский М.В. Основы тектонофизики. М.: Наука, 1975. 536 с].
13. Kasahara K., 1979. Migration of crustal deformation. Tectonophysics 52 (1–4), 329–341. http://dx.doi.org/10.1016/0040-1951(79)90240-3.
14. Kasahara K., 1985. Earthquake Mechanics. Mir, Moscow, 264 p. (in Russian) [Касахара К. Механика землетрясений. М.: Мир, 1985. 264 с.].
15. Kuz’min Yu.O., 2012. Deformation autowaves in fault zones. Izvestiya, Physics of the Solid Earth 48 (1), 1–16. http://dx. doi.org/10.1134/S1069351312010089.
16. Mogi K., 1968. Migration of Seismic Activity. Bulletin of the Earthquake Research Institute 46 (1), 53–74.
17. Mogi K., 1973. Relationship between shallow and deep seismicity in the western Pacific region. Tectonophysics 17 (1–2), 1–22. http://dx.doi.org/10.1016/0040-1951(73)90062-0.
18. Nikolayevskii V.N., Ramazanov T.K., 1985. Theory of fast tectonic waves. Journal of Applied Mathematics and Mechanics 49 (3), 356–362. http://dx.doi.org/10.1016/0021-8928(85)90035-8.
19. Panin V.E., 1998. Foundations of physical mesomechanics. Fizicheskaya Mezomekhanika 1 (1), 5–22 (in Russian) [Панин Е.В. Основы физической мезомеханики // Физическая мезомеханика. 1998. Т. 1. № 1. С. 5–22].
20. Panin V.E., Egorushkin V.E., Makarov P.V., Grinyayev Yu.V., Zuyev L.B., Syryamkin V.I., Kolobov Yu.R., 1995. Physical Mesomechanics and Computer Design of Materials. Nauka, Novosibirsk, 297 p. (in Russian) [Панин В.Е., Егорушкин В.Е., Макаров П.В., Гриняев Ю.В., Зуев Л.Б., Сырямкин В.И., Колобов Ю.Р. Физическая мезомеханика и компьютерное конструирование материалов. Новосибирск: Наука, 1995. 297 с.].
21. Panteleev I.A., Plekhov O.A., Naimark O.B., Evseev A.V., Pan’kov I.l., Asanov V.A., 2015. Features of localisation of deformation at a stretching of silvinite. The Bulletin of the Perm National Research Polytechnical University. Mechanics (2), 127–138 (in Russian) [Пантелеев И.А., Плехов О.А., Наймарк О.Б., Евсеев А.В., Паньков И.Л., Асанов В.А. Особенности локализации деформации при растяжении сильвинита // Вестник Пермского национального исследовательского политехнического университета. Механика. 2015. № 2. С. 127–138].
22. Panteleev I., Plekhov O., Pankov I., Evseev A., Naimark O., Asanov V., 2014. Experimental investigation of the spatiotemporal localization of deformation and damage in sylvinite specimens under uniaxial tension. Engineering Fracture Mechanics 129, 38–44. http://dx.doi.org/10.1016/j.engfracmech.2014.08.004.
23. Richter C.F., 1958. Elementary Seismology. W.H. Freeman, San Francisco, 768 p.
24. Saprygin S.M., 1982. Specific features of the stress field in the Sakhalin’s interior. Tikhookeanskaya Geologiya (4), 67–74 (in Russian) [Сапрыгин С.М. Особенности поля напряжений в недрах Сахалина // Тихоокеанская геология. 1982. №4. C. 67–74].
25. Savage J.A., 1971. A theory of creep waves propagation along a transform faults. Journal of Geophysical Research 76 (8), 1954–1966. http://dx.doi.org/10.1029/JB076i008p01954.
26. Seminsky K.Zh., 1986. Structural and Mechanical Properties of Clayey Pastes as Model Material in Tectonic Experiments. IEC SB of the USSR Acad. Sci., Irkutsk, 130 p. VINITI 13.08.86. 5762–В86 (in Russian) [Семинский К.Ж. Структурно-механические свойства глинистых паст как модельного материала в тектонических экспериментах. Иркутск: ИЗК СО АН СССР, 1986. 130 с. ВИНИТИ 13.08.86. № 5762–В86].
27. Seminsky K.Zh., 2003. The Internal Structure of Continental Fault Zones. Tectonophysical Aspect. Geo Publishing House, Novosibirsk, 244 p. (in Russian) [Семинский К.Ж. Внутренняя структура континентальных разрывных зон: тектонофизический аспект. Новосибирск: «Гео», 2003. 244 с.].
28. Sherman S.I., 1977. Physical Regularities of Faulting in the Earth's Crust. Nauka, Siberian Branch, Novosibirsk, 102 p. (in Russian) [Шерман С.И. Физические закономерности формирования разломов в земной коре. Новосибирск: Наука, 1977. 102 с.].
29. Sherman S.I., 1984. Physical experiment in tectonics and the theory of similarity. Geologiya i Geofizika (Russian Geology and Geophysics) (3), 8–18 (in Russian) [Шерман С.И. Физический эксперимент в тектонике и теория подобия // Геология и геофизика. 1984. № 3. С. 8–18].
30. Sherman S.I., 2009. A tectonophysical model of a seismic zone: experience of development based on the example of the Baikal rift system. Izvestiya, Physics of the Solid Earth 45 (11), 938–941. http://dx.doi.org/10.1134/S1069351309110020.
31. Sherman S.I., 2013. Deformation waves as a trigger mechanism of seismic activity in seismic zones of the continental lithosphere. Geodynamics & Tectonophysics 4 (2), 83–117 (in Russian) [Шерман С.И. Деформационные волны как триггерный механизм сейсмической активности в сейсмических зонах континентальной литосферы // Геодинамика и тектонофизика. 2013. Т. 4. № 2. С. 83–117]. http://dx.doi.org/10.5800/GT-2013-4-2-0093.
32. Sherman S.I., 2014. Seismic Process and the Forecast of Earthquakes: Tectonophysical Conception. Geo Publishing House, Novosibirsk, 359 p. (in Russian) [Шерман С.И. Сейсмический процесс и прогноз землетрясений. Тектонофизическая концепция. Новосибирск: «Гео», 2014. 359 с.].
33. Sherman S.I., Gorbunova E.A., 2008. The wave nature of fault activation in Central Asia on the basis of seismic monitoring. Fizicheskaya Mezomechanika 11 (1), 115–122 (in Russian) [Шерман С.И., Горбунова Е.А. Волновая природа активизации разломов Центральной Азии на базе сейсмического мониторинга // Физическая мезомеханика. 2008. Т. 11. № 1. С. 115–122].
34. Sherman S.I., Seminsky K.Zh., Bornyakov S.A., Buddo V.Yu., Lobatskaya R.M., Adamovich A.N., Truskov V.A., Babichev A.A., 1991. Faulting in the Lithosphere. Shear Zones. Nauka, Siberian Branch, Novosibirsk, 261 p. (in Russian) [Шерман С.И., Семинский К.Ж., Борняков С.А., Буддо В.Ю., Лобацкая Р.М., Адамович А.Н., Трусков В.А., Бабичев А.А. Разломообразование в литосфере. Зоны сдвига. Новосибирск: Наука. Сибирское отделение, 1991. 261 с.].
35. Sholz C., 1977. A physical interpretation of the Haicheng earthquake prediction. Nature 267 (5607), 121–124. http://dx.doi.org/10.1038/267121a0.
36. Sutton M.A., Orteu J.J., Schreier H.W., 2009. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer, Berlin, 316 p.
37. Tarasova A.A., Bornyakov S.A., 2014. Experimental research of regularities space and time activization of faults in destructive zones of lithosphere. Izvestiya Irkutskogo gosudarstvennogo universiteta, Seriya «Nauki o Zemle» (The Bulletin of Irkutsk State University, Earth Sciences Series) 9, 118–131 (in Russian) [Тарасова А.А., Борняков С.А. Экспериментальное исследование закономерностей пространственно-временной активизации разломов в деструктивных зонах литосферы // Известия Иркутского государственного университета. Серия «Науки о Земле». 2014. Т. 9. С. 118–131].
38. Vilkovich E.V., Guberman Sh.A., Keilis-Borok V.I., 1974. Waves of tectonic deformation at major faults. Doklady AN SSSR 219 (1), 77–80 (in Russian) [Вилькович Е.В., Губерман Ш.А., Кейлис-Борок В.И. Волны тектонических деформаций на крупных разломах // Доклады АН СССР. 1974. Т. 219. № 1. С. 77–80].
39. Zhadin V.V., 1984. Spatiotemporal relationships of strong earthquakes. Izvestiya AN SSSR, Fizika Zemli (1), 34–38 (in Russian) [Жадин В.В. Пространственно-временные связи сильных землетрясений // Известия АН СССР, серия Физика Земли. 1984. № 1. С. 34–38].
40. Zuev L.B., Danilov V.I., Barannikova S.A., 2008. Physics of plastic flow localization. Nauka, Novosibirsk, 327 p. (in Russian) [Зуев Л.Б., Данилов В.И., Баранникова С.А. Физика макролокализации пластического течения. Новосибирск: Наука. Сиб. отд-ние, 2008. 327 с.].
Review
For citations:
Bornyakov S.A., Panteleev I.A., Tarasova A.A. DISCRETE DEFORMATION WAVE DYNAMICS IN SHEAR ZONES: PHYSICAL MODELLING RESULTS. Geodynamics & Tectonophysics. 2016;7(2):289-302. (In Russ.) https://doi.org/10.5800/GT-2016-7-2-0207