HYDROGEN IN THE EARTH’S OUTER CORE, AND ITS ROLE IN THE DEEP EARTH GEODYNAMICS
https://doi.org/10.5800/GT-2016-7-1-0200
Abstract
The content of hydrogen in the outer core of the Earth is roughly quantified from the dependence of the density of iron (viewed as the main component of the core) on the amount of hydrogen dissolved in the core, with account of the most likely presence of iron hydrogen in the outer core, and the matter’s density jumps at the boundaries between the outer liquid core and the internal solid core (that is devoid of hydrogen) and the mantle. Estimations for the outer liquid core show that the hydrogen content varies from 0.67 wt. % at the boundary with the solid inner core to 3.04 wt. % at the boundary with the mantle.
Iron occlusion is viewed as the most likely mechanism for the iron–nickel core to capture such a significant amount of hydrogen. Iron occlusion took place at the stage of the young sun when the metallic core emerged in the cooling protoplanetary cloud containing hydrogen in high amounts, and non-volatile hydrogen was accumulated. Absorption (occlusion) of molecular hydrogen was preceded by dissociation of molecules into atoms and ionization of the atoms, as proved by results of studies focused on Fe–H2 system, and hydrogen dissipation was thus prevented. The core matter was subject to gravitational compression at high pressures that contributed to the forced rapprochement of protons and electrons which interaction resulted by the formation of hydrogen atoms. Highly active hydrogen atoms reacted with metals and produced hydrides of iron and nickel, FeH and NiH. While the metallic core and then the silicate mantle were growing and consolidating, the stability of FeH and NiH was maintained due to pressures that were steadily increasing. Later on, due to the impacts of external forces on the Earth, marginal layers at the mantle–core boundary were detached and displaced, pressures decreased in the system, and iron and nickel hydrides were decomposed to produce molecular hydrogen. Consequences of the hydrides transformation into molecular hydrogen are important in terms of petrology, mineralogy and geodynamics. At high temperatures, molecular hydrogen can be involved in redox reactions with iron silicates and carbonaceous gases (CO and CO2), and the synthesis of water becomes possible throughout the entire mantle. It is known that water can significantly reduce the temperature of rock melting, which leads to partial melting of the rocks and pluming in the asthenosphere (in the D” layer) at the bottom of the mantle, and causes the hydrolysis of magnesium silicates, which results in the chemically bound state (hydroxyl ions). Highly ductile hydroxyl-containing magnesium silicates can alter rheological properties of the rocks. A combination of rheologically weak areas in the mantle rocks and the external cosmic effects can cause significant impacts on the tectonic activity and facilitate its manifestation throughout the entire mantle.
About the Author
V. N. RumyantsevRussian Federation
Candidate of Chemistry, Senior Researcher
References
1. Antonov V.E., Belash I.T., Degtyareva V.F., Ponyatovsky E.G., Shiryaev V.I., 1980. Production of iron hydride at high hydrogen pressure. Doklady AN SSSR 252 (6), 1384–1387 (in Russian) [Антонов В.Е., Белаш И.Т., Дегтярева В.Ф., Понятовский Е.Г., Ширяев В.И. Получение гидрида железа при высоком давлении водорода // Доклады АН СССР. 1980. Т. 252. No 6. С. 1384–1387].
2. Archakov Yu.I., 1985. Hydrogen corrosion of steel. Metallurgy, Moscow, 192 p. (in Russian) [Арчаков Ю.И. Водородная коррозия стали. М.: Металлургия, 1985. 192 с.].
3. Betekhtin A.G., 1956. The Course of Mineralogy. Edition 2, revised. Gosgeoltekhizdat, Moscow, 558 p. (in Russian) [Бетехтин А.Г. Курс минералогии. Издание 2-е, исправленное. М.: Госгеолтехиздат, 1956. 558 с.].
4. Bijwaard H., Spakman W., Engdahl E.R., 1998. Closing the gap between regional and global travel time tomography. Journal of Geophysical Research 103 (B12), 30055–30078. http://dx.doi.org/10.1029/98JB02467.
5. Bolt B., 1984. In the Depths of the Earth. Mir, Moscow, 189 p. (in Russian) [Болт Б. В глубинах Земли. М.: Мир, 1984. 189 с.].
6. Buallo G., 1985. The Geology of Continental Margins. Mir, Moscow, 156 p. (in Russian) [Буалло Г. Геология окраин континентов. М.: Мир, 1985. 156 с.].
7. Chinnery N.J., Pawley A.R., Clark S.M., 1999. In situ observation of the formation of 10 Å phase from talc+ H2O at mantle pressures and temperatures. Science 286 (5441), 940–942. http://dx.doi.org/10.1126/science.286.5441.940.
8. Dobretsov N.L., Kirdyashkin A.A., Kirdyashkin A.G., Gladkov I.N., Surkov N.V., 2006. Parameters of hotspots and thermochemical plumes during their ascent and eruption. Petrology 14 (5), 477–491. http://dx.doi.org/10.1134/ S0869591106050043.
9. Dobretsov N.L., Kirdyashkin A.G., 2000. Sources of mantle plumes. Doklady Earth Sciences 373 (5), 879–881.
10. Dorofeeva V.A., Makalkin A.B., 2004. The Evolution of the Early Solar System. Cosmochemical and Physical Aspects. Editorial URSS, Moscow, 261 p. (in Russian) [Дорофеева В.А., Макалкин А.Б. Эволюция ранней Солнечной системы. Космохимические и физические аспекты. М.: Едиториал УРСС, 2004. 261 с.].
11. Dziewonski A.M., Anderson D.L., 1981. Preliminary reference Earth model. Physics of the Earth and Planetary Interiors 25 (4), 297–356. http://dx.doi.org/10.1016/0031-9201(81)90046-7.
12. Dziewonski A.M., Woodhouse J.H., 1987. Global images of the Earth's interior. Science 236 (4797), 37–48. http:// dx.doi.org/10.1126/science.236.4797.37.
13. Fedorin Ya.V., 1991. The Early Earth Evolution Model. Naukova Dumka, Kiev, 112 p. (in Russian) [Федорин Я.В. Модель эволюции ранней Земли. Киев: Наукова думка, 1991. 112 с.].
14. Florensky K.P., Bazilevsky A.T., Burba G.A., Volkov V.P., Ivanov A.V., Kuzmin R.O., Nazarov M.F., Nikolaeva O.V., Pronin A.A., Rode O.D., Yakovlev O.I., Yaroshevsky A.A., 1981. Essays on Comparative Planetology. Nauka, Moscow, 326 p. (in Russian) [Флоренский К.П., Базилевский А.Т., Бурба Г.А., Волков В.П., Иванов А.В., Кузьмин Р.О., Назаров М.Ф., Николаева О.В., Пронин А.А., Родэ О.Д., Яковлев О.И., Ярошевский А.А. Очерки сравнительной планетологии. М.: Наука, 1981. 326 с.].
15. Frost D.J., Fei Y., 1998. Stability of phase D at high pressure and high temperature. Journal of Geophysical Research 103 (B4), 7463–7474. http://dx.doi.org/10.1029/98JB00077.
16. Frye K. (Ed.), 1985. The Encyclopedia of Mineralogy. Nedra, Leningrad, 512 p. (in Russian) [Минералогическая энциклопедия / Ред. К. Фрей. Л.: Недра, 1985. 512 с.].
17. Fukai Y., 1984. The iron–water reaction and the evolution of the Earth. Nature 308 (5955), 174–175. http:// dx.doi.org/10.1038/308174a0.
18. Fukai Y., Sugimoto H., 1983. Enhanced solubility of hydrogen in metals under high pressure: thermodynamical calculation. Transactions of the Japan institute of metals 24 (11), 733–740. http://dx.doi.org/10.2320/matertrans 1960.24.733.
19. Fukai Y., Suzuki T., 1986. Iron-water reaction under high pressure and its implication in the evolution of the Earth. Journal of Geophysical Research 91 (B9), 9222–9230. http://dx.doi.org/10.1029/JB091iB09p09222.
20. Galaktionova N.A., 1967. Hydrogen in Metals. Edition 2, revised. Metallurgy, Moscow, 303 p. (in Russian) [Галактионова Н.А. Водород в металлах. Издание 2-е, переработанное и дополненное. М.: Металлургия, 1967. 303 с.].
21. Garnero E.J., 2004. A new paradigm for Earth's core-mantle boundary. Science 304 (5672), 834–836. http:// dx.doi.org/10.1126/science.1097849.
22. Gasparik T., 1993. The role of volatiles in the transition zone. Journal of Geophysical Research 98 (B3), 4287–4299. http://dx.doi.org/10.1029/92JB02530.
23. Gavrish M.L., Galinker I.S., 1967. Hydrolysis of lithium and sodium silicates in aqueous solutions at temperatures of 160–340 °С. Zhurnal neorganicheskoi khimii (Journal of Inorganic Chemistry) 12 (3), 823–824 (in Russian) [Гавриш М.Л., Галинкер И.С. Гидролиз силикатов лития и натрия в водных растворах при температуре 160–340 °С // Журнал неорганической химии. 1967. Т. 12. No 3. С. 823–824].
24. Grossman L., 1972. Condensation in the primitive solar nebula. Geochimica et Cosmochimica Acta 36 (5), 597–619. http://dx.doi.org/10.1016/0016-7037(72)90078-6.
25. Harris P.G., Tozer D.C., 1967. Fractionation of iron in the solar system. Nature 215 (5109), 1449–1451. http://dx.doi.org/ 10.1038/2151449a0.
26. Ione K.G., Mysov V.M., Reshetnikov V.S., 2007. Geocatalysis as a factor influencing the efficiency of discovery and composition of natural hydrocarbon. In: Fundamental problems of oil and gas geology and geochemistry and development of oil and gas industry in Russia. GEOS, Moscow, p. 77–92 (in Russian) [Ионе К.Г., Мысов В.М., Решетников В.С. Геокатализ как фактор влияния на скорость нахождения и состав природных углеводородных скоплений // Фундаментальные проблемы геологии и геохимии нефти и газа и развитие нефтегазового комплекса России. М.: ГЕОС, 2007. С. 77–92].
27. Karakin A.V., Kuryanov Yu.A., Pavlenkova N.I., 2003. Faults, Fractured Zones and Waveguides in the Upper Layers of the Earth Shell. VNIIgeosystem, Moscow, 228 p. (in Russian) [Каракин А.В., Курьянов Ю.А., Павленкова Н.И. Разломы, трещиноватые зоны и волноводы в верхних слоях земной оболочки. М.: ВНИИгеосистем, 2003. 228 с.].
28. Karus E.V., Sarkisov Yu.M., 1986. On the anti-stratiform nature of the crust profile in the crystalline base of the continental crust. Doklady AN SSSR 289 (1), 176–179 (in Russian) [Карус Е.В., Саркисов Ю.М. Об антистратиформном характере разреза коры кристаллического основания континентальной земной коры // Доклады АН СССР. 1986. Т. 289. No 1. С. 176–179].
29. Kern H., Schenk V., 1985. Elastic wave velocities in rocks from a lower crustal section in southern Calabria (Italy). Physics of the Earth and Planetary Interiors 40 (3), 147–160. http://dx.doi.org/10.1016/0031-9201(85)90126-8.
30. Khain V.E., 2003. The Main Problems of Modern Geology. Edition 2. Nauchny Mir, Moscow, 347 p. (in Russian) [Хаин В.Е. Основные проблемы современной геологии. Издание 2-е, дополненное. М.: Научный мир, 2003. 347 с.].
31. Khisina N.R., Virt R., 2008. Phase 10Å Mg3Si4O10 (OH)2·nH2O – ‘omnipresent’ high-pressure nanomineral of kimberlites. In: Petrology of the lithosphere and the origin of diamond. Abstracts of Academician V.S. Sobolev Centenary International Symposium held on 05–07 June 2008 in Novosibirsk. Publishing House of SB RAS, Novosibirsk, p. 105. (in Russian) [Хисина Н.Р., Вирт Р. 10Å-фаза Mg3Si4O10 (OH)2·nH2O – «сквозной» высокобарный наноминерал кимберлитов // Петрология литосферы и происхождение алмаза: Тезисы докладов международного симпозиума, посвященного 100-летию со дня рождения академика В.С. Соболева. Новосибирск, 5–7 июня 2008 г.. Новосибирск: Изд-во СО РАН, 2008. С. 105].
32. Khitarov N.I., Lebedev E.B., Dorfman A.M., Bagdasarov N.Sh., 1983. Examination of melting of Kirgurich basalt by means of wave method. Geokhimiya (Geochemistry) (9), 1239–1246 (in Russian) [Хитаров Н.И., Лебедев Е.Б., Дорфман А.М., Багдасаров Н.Ш. Исследование процесса плавления базальта Киргурич волновым методом // Геохимия. 1983. No 9. С. 1239–1246].
33. Kirdyashkin A.A., Dobretsov N.L., Kirdyashkin A.G., 2000. Experimental modeling of the influence of subduction zones on the spatial structure of lower mantle convection and characteristic periods of heat flow fluctuations in the mantle. Doklady Earth Sciences 371A (3), 565–568.
34. Kirdyashkin A.A., Dobretsov N.L., Kirdyashkin A.G., 2004. Thermochemical plumes. Geologiya i Geofizika (Russian Geology and Geophysics) 45 (9), 1057–1073.
35. Kirdyashkin A.A., Kirdyashkin A.G., 2013. Interaction of a thermochemical plume with free convection mantle flows and its influence on mantle melting and recrystallization. Russian Geology and Geophysics 54 (5), 544–554. http://dx.doi.org/10.1016/j.rgg.2013.04.006.
36. Knipper A.L., 1969. Tectonic position of ultramafic rocks in geosyncline areas and some problems of initial magmatism. In: Problems of relations between tectonics and magmatism. Nauka, Moscow, p. 116–132 (in Russian) [Книппер А.Л. Тектоническое положение пород гипербазитовой формации в геосинклинальных областях и некоторые проблемы инициального магматизма // Проблемы связи тектоники и магматизма. М.: Наука, 1969. С. 116–132].
37. Kosminskaya I.P., Davydova N.I., 1978. Structural seismology and its methods. In: V.V. Belousov (Ed.), Tectonophysics of the Earth. Nauka, Moscow, p. 179–187 (in Russian) [Косминская И.П., Давыдова Н.И. Структурная сейсмология и ее методы // Тектонофизика Земли / Ред. В.В. Белоусов. М.: Наука, 1978. С. 179–187].
38. Kuskov O.L., Dorofeeva V.A., Kronrod V.A., Makalkin A.B., 2009. Systems of Jupiter and Saturn: Formation, Composition and Interior Structure of Large Satellites. LKI Publishing House, Moscow, 576 p. (in Russian) [Кусков О.Л., Дорофеева В.А., Кронрод В.А., Макалкин А.Б. Системы Юпитера и Сатурна: Формирование, состав и внутреннее строение крупных спутников. М.: Изд-во ЛКИ, 2009. 576 с.].
39. Kuskov O.L., Khitarov N.I., 1982. Thermodynamics and Geochemistry of the Earth's Core and Mantle. Nauka, Moscow, 278 p. (in Russian) [Кусков О.Л., Хитаров Н.И. Термодинамика и геохимия ядра и мантии Земли. М.: Наука, 1982. 278 с.].
40. Larimer J.W., 1967. Chemical fractionations in meteorites – I. Condensation of the elements. Geochimica et Cosmochimica Acta 31 (8), 1215–1238. http://dx.doi.org/10.1016/S0016-7037(67)80013-9.
41. Leonov Yu.G., Perfiliev A.S., 1999. Tectonic nature of the Moho. In: Problems of lithosphere geodynamics (Proceedings of the Geological Institute, Issue 511). Nauka, Moscow, p. 10–26 (in Russian) [Леонов Ю.Г., Перфильев А.С. Тектоническая природа границы Мохоровичича // Проблемы геодинамики литосферы (Труды Геологического института РАН, вып. 511). М.: Наука, 1999. С. 10–26].
42. Letnikov F.A., 2007. Some issues of synergy in Earth sciences. In: Synergy of geosystems. Materials of the symposium held on 16–19 April 2007 in IGEM RAS, Moscow. Moscow Branch of the Russian Mineralogical Society, Moscow, p. 7–15 (in Russian) [Летников Ф.А. Некоторые проблемы синергетики в науках о Земле // Синергетика геосистем. Материалы симпозиума 16–19 апреля 2007 г., Москва. М.: Московское отделение Российского минералогического общества, 2007. С. 7–15].
43. Levin B.Yu., Maeva S.V., Safronov V.S., 1972. The thermal history of the Earth and its sister planets. In: P.N. Kropotkin (Ed.), Power of geological and geophysical processes. Nauka, Moscow, p. 38–51 (in Russian) [Левин Б.Ю., Маева С.В., Сафронов В.С. Термическая история Земли и родственных ей планет // Энергетика геологических и геофизических процессов / Ред. П.Н. Кропоткин. М.: Наука, 1972. С. 38–51].
44. Liu L.G., 1987. Effects of H2O on the phase behaviour of the forsterite-enstatite system at high pressures and temperatures and implications for the Earth. Physics of the Earth and Planetary Interiors 49 (1–2), 142–167. http:// dx.doi.org/10.1016/0031-9201(87)90138-5.
45. Marakushev A.A., 1975. Serpentinization of harzburgite. Izvestiya AN SSSR, Seriya geologicheskaya (7), 5–20 (in Russian) [Маракушев А.А. Серпентинизация гарцбургитов // Известия АН СССР, серия геологическая. 1975. No 7. С. 5–20].
46. Melikhov V.R., Lygin I.V., 2008. Tectonic catastrophes and their role in the Earth evolution. Geofizika (Geophysics) (2), 11–19 (in Russian) [Мелихов В.Р., Лыгин И.В. Тектонические катастрофы и их место в эволюционном развитии Земли // Геофизика. 2008. No 2. С. 11–19].
47. Moiseev N.N., 1990. The Man and the Noosphere. Molodaya Gvardia, Moscow, 352 p. (in Russian) [Моисеев Н.Н. Человек и ноосфера. М.: Молодая гвардия, 1990. 352 с.].
48. Mori J., Helmberger D.V., 1995. Localized boundary layer below the mid-Pacific velocity anomaly identified from a PcP precursor. Journal of Geophysical Research 100 (B10), 20359–20365. http://dx.doi.org/10.1029/95JB02243.
49. Moskaleva S.V., 1974. Ultramafic Rocks and Chromite-bearing Capacity. Nedra, Leningrad, 279 p. (in Russian) [Москалева С.В. Гипербазиты и их хромитоносность. Л.: Недра, 1974. 279 с.].
50. Nekrasov B.V., 1962. The Course of General Chemistry. Edition 14. Goskhimizdat, Moscow, 976 p. (in Russian) [Некрасов Б.В. Курс общей химии. Издание 14-е. М.: Госхимиздат, 1962. 976 с.].
51. Nikolsky B.P. (Ed.), 1963. Chemist Guidebook. V. 2. Edition 2, revised. GKhI, Leningrad–Moscow, 1168 p. (in Russian) [Справочник химика. Т. 2. 2-е издание, переработанное и дополненное / Ред. Б.П. Никольский. Л.–М.: ГХИ, 1963. 1168 с.].
52. Okuchi T., 1997. Hydrogen partitioning into molten iron at high pressure: implications for Earth's core. Science 278 (5344), 1781–1784. http://dx.doi.org/10.1126/science.278.5344.1781.
53. Pavlenkova N.I., 1996. The development of ideas concerning seismic models of the Earth's crust. Geofizika (Geophysics) (4), 11–19 (in Russian) [Павленкова Н.И. Развитие представлений о сейсмических моделях земной коры // Геофизика. 1996. No 4. С. 11–19].
54. Peive A.V., 1981. The Moho geology. In: Problems of the Earth's Crust tectonics. Nauka, Moscow, p. 7–13 (in Russian) [Пейве А.В. Геология раздела Мохоровичича // Проблемы тектоники земной коры. М.: Наука, 1981. С. 7–13].
55. Persikov E.S., Apelbaum M.B., 1985. The mechanism of magmatic melt differentiation in hydrogen pressure experiments. Geokhimiya (Geochemistry) (6), 739–746 (in Russian) [Персиков Э.С., Эпельбаум М.Б. Механизм дифференциации магматических расплавов в экспериментах под давлением водорода // Геохимия. 1985. No 6. С. 739–746].
56. Pinneker E.V., 1985. Water and endogenous geological processes. In: Groundwater and lithosphere evolution. The AllUnion Conference Proceedings. V. 1. Nauka, Moscow, p. 151–158 (in Russian) [Пиннекер Е.В. Вода и эндогенные геологические процессы // Подземные воды и эволюция литосферы: Материалы Всесоюзной конференции. Т. 1. М.: Наука, 1985. С. 151–158].
57. Pushcharovsky D.Y., Oganov A.R., 2006. Structural transformations of minerals in deep geospheres: A review. Crystallography Reports 51 (5), 767–777. http://dx.doi.org/10.1134/S1063774506050063.
58. Pushcharovsky Yu.M., 1995. About the three paradigms in geology. Geotektonika (Geotectonics) (1), 4–11 (in Russian) [Пущаровский Ю.М. О трех парадигмах в геологии // Геотектоника. 1995. No 1. С. 4–11].
59. Pushcharovsky Yu.M., 2001. Tectonics and geodynamics of the Earth's mantle. In: Yu.M. Pushcharovsky (Ed.), Fundamental problems of global tectonics. Nauchny Mir, Moscow, p. 10–33 (in Russian) [Пущаровский Ю.М. Тектоника и геодинамика мантии Земли // Фундаментальные проблемы общей тектоники / Ред. Ю.М. Пущаровский. М.: Научный мир, 2001. С. 10–33].
60. Pushcharovsky Yu.M., Pushcharovsky D.Yu., 2010. The Geology of the Earth Mantle. GEOS, Moscow, 139 p. (in Russian) [Пущаровский Ю.М., Пущаровский Д.Ю. Геология мантии Земли. М.: ГЕОС, 2010. 139 с.].
61. Rezanov I.A., Faitelson A.Sh., Krasnopevtseva G.V., 1984. The Nature of the Moho. Nedra, Moscow, 219 p. (in Russian) [Резанов И.А., Файтельсон А.Ш., Краснопевцева Г.В. Природа границы Мохоровичича. М.: Недра, 1984. 219 с.].
62. Ringwood A.E., 1981. The Composition and Petrology of the Earth Mantle. Nedra, Moscow, 584 p. (in Russian) [Рингвуд А.Е. Состав и петрология мантии Земли. М.: Недра, 1981. 584 с.].
63. Rudnik V.A., Sobotovich E.V., 1984. The Early History of the Earth. Nedra, Moscow, 349 p. (in Russian) [Рудник В.А., Соботович Э.В. Ранняя история Земли. М.: Недра, 1984. 349 с.].
64. Rumyantsev V.N., 1988. The role of hydrolysis in hydrothermal mineralization and the nature of retrograde solubility of minerals in the water. Zapiski Vsesoyuznogo mineralogicheskogo obshchestva (Proceedings of the All-Union Mineralogical Society) 117 (1), 29–36 (in Russian) [Румянцев В.Н. Роль гидролиза в гидротермальном минералоотложении и природа ретроградной растворимости минералов в воде // Записки Всесоюзного минералогического общества. 1988. Ч. 117. Вып. 1. С. 29–36].
65. Rumyantsev V.N., 2005. On the role of aqueous fluids in the formation of earthquake sources. Izvestiya, Physics of the Solid Earth 41 (7), 530–538.
66. Rumyantsev V.N., 2010. Hydrogen in the Earth core and its role in tectonic and magmatic processes. In: A.N. Dmitrievsky, B.M. Valyaev (Eds.), Degassing of the Earth: geotectonics, geodynamics, geofluids; oil and gas; hydrocarbons, and life. Proceedings of Academician P.N. Kropotkin’s Centenary Conference held on 18–22 October 2010 in Moscow. GEOS, Moscow, p. 460–463 (in Russian) [Румянцев В.Н. Водород в ядре Земли и его роль в тектономагматических процессах // Дегазация Земли: геотектоника, геодинамика, геофлюиды; нефть и газ; углеводороды и жизнь: Материалы Всероссийской конференции с международным участием, посвященной 100-летию со дня рождения академика П.Н. Кропоткина, 18–22 октября 2010 г., г. Москва / Ред. А.Н. Дмитриевский, Б.М. Валяев. М.: ГЕОС, 2010. С. 460–463].
67. Rumyantsev V.N., 2011. Differentiation of the matter in the protoplanetary cloud during the formation of the Earth and the nature of hydrogen in its core. In: V.A. Naumov (Ed.), Knowledge synthesis in natural sciences. The mine for the Future: Projects, Technologies, and Equipment. Proceedings of the International Scientific Conference. In two volumes. Perm State National Research University, Perm. V. 1. P. 183–188 (in Russian) [Румянцев В.Н. Дифференциация вещества в протопланетном облаке при формировании Земли и природа водорода в ее ядре // Синтез знаний в естественных науках. Рудник будущего: проекты, технологии, оборудование: Материалы Международной научной конференции. В 2 т. / Ред. В.А. Наумов. Пермь: Пермский государственный национальный исследовательский университет, 2011. Т. 1. С. 183–188].
68. Ryabchikov I.D., 2003. Fluid regime of mantle plumes. Geochemistry International 41 (9), 838–843.
69. Shapkin A.I., Sidorov Y.I., 1997. PT dependence of the density of nebular condensate. Geochemistry International 35 (12), 1060–1070.
70. Shcheglov A.D., Govorov I.N., 1986. Nonlinear Metallogeny and the Earth Interior. Nauka, Moscow, 326 p. (in Russian) [Щеглов А.Д., Говоров И.Н. Нелинейная металлогения и глубины Земли. М.: Наука, 1986. 326 с.].
71. Shchelkin K.I., 1963. Physics of the Microworld. Gosatomizdat, Moscow, 168 p. (in Russian) [Щелкин К.И. Физика микромира. М.: Госатомиздат, 1963. 168 с.].
72. Shteinberg D.S., Chashchukhin D.S., 1977. Serpentinization of Ultrabacis Rocks. Nauka, Moscow, 312 p. (in Russian) [Штейнберг Д.С., Чащухин Д.С. Серпентинизация ультрабазитов. М.: Наука, 1977. 312 с.].
73. Slutsky A.B., Khitarov N.I., Khodyrev O.Yu., 1984. The stability of serpentine and talc in MgO–SiO2–H2O system at high pressures (according to the thermographic analysis). Geokhimiya (Geochemistry) (3), 314–323 (in Russian) [Слуцкий А.Б., Хитаров Н.И., Ходырев О.Ю. Устойчивость серпентина и талька в системе MgO–SiO2–H2O при высоких давлениях (по данным термографического анализа) // Геохимия. 1984. No 3. С. 314–323].
74. Sokol A.G., Fedorov I.I., 1991. Interaction between silicates and hydrogen at high PT-parameters. Geologiya i Geofizika (Russian Geology and Geophysics) (8), 90–95 (in Russian) [Сокол А.Г., Федоров И.И. Взаимодействие силикатов с водородом при высоких PТ-параметрах // Геология и геофизика. 1991. No 8. С. 90–95].
75. Storch G., Golambik N., Anderson R., 1954. Synthesis of Hydrocarbons from Carbon Monoxide and Hydrogen. Foreign Literature Publishing House, Moscow, 516 p. (in Russian) [Сторч Г., Голамбик Н., Андерсон Р. Синтез углеводородов из окиси углерода и водорода. М.: Изд-во иностранной литературы, 1954. 516 с.].
76. Su W.J., Woodward R.L., Dziewonski A.M., 1994. Degree 12 model of shear velocity heterogeneity in the mantle. Journal of Geophysical Research 99 (B4), 6945–6980. http://dx.doi.org/10.1029/93JB03408.
77. Tödheide K., 1982. Hydrothermal solutions. Berichte der Bunsengesellschaft für physikalische Chemie 86 (11), 1005– 1016. http://dx.doi.org/10.1002/bbpc.198200007.
78. Tyburczy J.A., Duffy T.S., Ahrens T.J., Lange M.A., 1991. Shock wave equation of state of serpentine to 150 GPa: Implications for the occurrence of water in the Earth's lower mantle. Journal of Geophysical Research 96 (B11), 18011– 18027. http://dx.doi.org/10.1029/91JB01573.
79. Ukhanov A.V., Devirts A.L., Ivanov N.D., 1987. Isotopic light hydrogen in Kempirsae (South Urals, Russia). Doklady AN SSSR 293 (3), 700–704 (in Russian) [Уханов А.В., Девирц А.Л., Иванов Н.Д. Изотопно-легкий водород на Кемпирсае (Южный Урал) // Доклады АН СССР. 1987. Т. 293. No 3. С. 700–704].
80. Vakhromeev G.S., Erofeev L.Ya., Kanaikin V.S., Nomokonova G.G., 1997. Petrophysics. Textbook for Universities. Tomsk University Publishing House, Tomsk, 426 p. (in Russian) [Вахромеев Г.С., Ерофеев Л.Я., Канайкин В.С., Номоконова Г.Г. Петрофизика: Учебник для вузов. Томск: Изд-во Томского университета, 1997. 426 с.].
81. Vernadsky V.I., 1960. Selected Works. Volume 4. Book 2. The History of Mineral Crust. Publishing House of the USSR Academy of Sciences, Moscow, 651 p. (in Russian) [Вернадский В.И. Избранные сочинения. Т. 4. Кн. 2. История минералов земной коры. М.: Изд-во АН СССР, 1960. 651 с.].
82. Vinogradov A.P., 1975. The formation of metallic cores of planets. Geokhimiya (Geochemistry) (10), 1427–1431 (in Russian) [Виноградов А.П. Образование металлических ядер планет // Геохимия. 1975. No 10. С. 1427–1431].
83. Voitkevich G.V., 1979. Fundamentals of the Earth Origin Theory. Nedra, Moscow, 135 p. (in Russian) [Войткевич Г.В. Основы теории происхождения Земли. М.: Недра, 1979. 135 с.].
84. Voitkevich G.V., Bessonov O.A., 1986. The Chemical Evolution of the Earth. Nedra, Moscow, 215 p. (in Russian) [Войткевич Г.В., Бессонов О.А. Химическая эволюция Земли. М.: Недра, 1986. 215 с.].
85. Williams Q., Garnero E.J., 1996. Seismic evidence for partial melt at the base of Earth's mantle. Science 273 (5281), 1528–1530. http://dx.doi.org/10.1126/science.273.5281.1528.
86. Yaroshevsky A.A., 2004. Problems of Modern Geochemistry. Lecture Notes. Novosibirsk State University, Novosibirsk, 194 p. (in Russian) [Ярошевский А.А. Проблемы современной геохимии: Конспект лекций. Новосибирск: Новосибирский государственный университет, 2004. 194 с.].
87. Yurkova R.M., 1991. Mineral Transformation of Ophiolite and Host Volcanogenic-Sedimentary Complexes of the Northwestern Pacific Ocean Margin. (Proceedings of the Geological Institute of the USSR, Issue 464). Nauka, Moscow, 166 p. (in Russian) [Юркова Р.М. Минеральные преобразования офиолитовых и вмещающих вулканогенно-осадочных комплексов северо-западного обрамления Тихого океана. М.: Наука, 1991. 166 с. (Труды Геологического института АН СССР, вып. 464)].
88. Yurkova R.M., 2002. Ascent and transformation of mantle hydrocarbon fluids in connection with the formation of ophiolite diapir. In: Degassing of the Earth: geodynamics, geofluids, oil and gas. Proceedings of P.N. Kropotkin International Conference held on 20–24 May 2002 in Moscow. GEOS, Moscow, p. 278–280 (in Russian) [Юркова Р.М. Подъем и преобразование мантийных углеводородных флюидов в связи с формированием офиолитового диапира // Дегазация Земли: геодинамика, геофлюиды, нефть и газ: Материалы Международной конференции памяти академика П.Н. Кропоткина, 20–24 мая 2002, г. Москва. М.: ГЕОС, 2002, С. 278–280].
89. Zharkov V.N., 1983. The Interior Structure of the Earth and Planets. Edition 2, revised. Nauka, Moscow, 415 p. (in Russian) [Жарков В.Н. Внутреннее строение Земли и планет. Издание 2-е, переработанное и дополненное. М.: Наука, 1983. 415 с.].
90. Zharkov V.N., 1996. The internal structure of Mars: a key to understanding the origin of terrestrial planets. Solar System Research 30 (6), 456–465.
Review
For citations:
Rumyantsev V.N. HYDROGEN IN THE EARTH’S OUTER CORE, AND ITS ROLE IN THE DEEP EARTH GEODYNAMICS. Geodynamics & Tectonophysics. 2016;7(1):119-135. https://doi.org/10.5800/GT-2016-7-1-0200