DEEP STRUCTURE OF THE SIBERIAN PLATFORM – CENTRAL ASIAN MOBILE BELT TRANSITION ZONE FROM TELESEISMIC DATA
https://doi.org/10.5800/GT-2016-7-1-0198
Abstract
Deep velocity sections of the transition zone from the Siberian platform to the Central Asian mobile belt are constructed by teleseismic tomography and P-receiver function techniques. An array of the dense ancient Siberian craton is identified in the velocity sections with areas of high seismic velocity. In the SSW section MOBAL_2003, the surface boundary of the craton corresponds to the southern margin of the Siberian platform and is nearly vertical to a depth of 120 km. At larger depths, the craton slides almost horizontally underneath the Tunka rift area. At depths from 150 to 250 km, it is in contact with the area under the Khamar-Daban mountain range. In the southeast, according to the SE velocity section PASSCAL_1992 across the South Baikal basin and the Khamar-Daban mountain range, the Siberian craton thickness is reduced from 270 to 150 km at the contact of the Siberian platform with the Baikal folded area. In this contact zone, the upper part of the craton is wedge-shaped and has an angle of about 45° with the ground surface; it completely tapers off at a depth of 150 km to the east of Lake Baikal. The vertical configuration of the southern segment of the Siberian craton, which evolved with time, may determine the nature of the Baikal rifting in the Cenozoic.
About the Authors
V. V. MordvinovaRussian Federation
Doctor of Geology and Mineralogy, Lead Researcher
M. M. Kobelev
Russian Federation
Engineer, Postgraduate Student
A. V. Treussov
Russian Federation
Candidate of Physics and Mathematics, Lead Researcher
M. A. Khritova
Russian Federation
Lead Programmer
D. S. Trynkova
Russian Federation
Postgraduate Student
E. A. Kobeleva
Russian Federation
Candidate of Physics and Mathematics, Head of Group of seismological observations
O. F. Lukhneva
Russian Federation
Candidate of Geology and Mineralogy, Researcher
References
1. Aki K., Christofferson A., Husebye E.S., 1977. Determination of three-dimensional seismic structure of the lithosphere. Journal of Geophysical Research 82 (2), 277–296. http://dx.doi.org/10.1029/JB082i002p00277.
2. Ammon C.J., Randall G.E., Zandt G., 1990. On the nonuniqueness of receiver function inversion. Journal of Geophysical Research 95 (B10), 15303–15318. http://dx.doi.org/10.1029/JB095iB10p15303.
3. Barruol G., Deschamps A., Déverchère J., Mordvinova V., Ulziibat M., Perrot J., Artemiev A., Dugarmaa T., Bokelmann G., 2008. Upper mantle flow beneath and around the Hangay dome, Central Mongolia. Earth and Planetary Science Letters 274 (1), 221–233. http://dx.doi.org/10.1016/j.epsl.2008.07.027.
4. Berkhout A.J., 1977. Least-square inverse filtering and wavelet deconvolution. Geophysics 42 (7), 1369–1383. http:// dx.doi.org/10.1190/1.1440798.
5. Bertrand E., Deschamps A., 2000. Lithospheric structure of the southern French Alps inferred from broadband analysis. Physics of the Earth and Planetary Interiors 122 (1–2), 79–102. http://dx.doi.org/10.1016/S0031-9201(00) 00188-6.
6. Burkholder P.D., Meyer R.P., Delitsin L.L., Davis P.M., Zorin Yu.A., 1995. A teleseismic tomography image of the upper mantle beneath the southern Baikal rift zone. In: Proceeding to IUGG XXI General Assembly. Boulder, p. 400.
7. Egorkin A.V., Pavlenkova N.I., Romanyuk T.V., Solodilov L.N., 1996. Upper-mantle structure along the Baikal–Yamal “Rift” profile, obtained using peaceful nuclear bursts. Geologiya i Geofizika (Russian Geology and Geophysics) 37 (9), 66– 76 (in Russian) [Егоркин А.В., Павленкова Н.И., Романюк Т.В., Солодилов Л.Н. Структура верхней мантии по профилю Байкал–Ямал “Pифт”, полученная с применением мирных ядерных взрывов // Геология и геофизика. 1996. Т. 37. No 9. С. 66–76].
8. Emmerson B., Jackson J., McKenzie D., Priestley K., 2006. Seismicity, structure and rheology of the lithosphere in the lake Baikal region. Geophysical Journal International 167 (3), 1233–1272. http://dx.doi.org/10.1111/j.1365-246X. 2006.03075.x.
9. Gao S., Liu K., Chen C., 2004. Significant crustal thinning beneath the Baikal rift zone: New constraints from receiver function analysis. Geophysical Research Letters 31 (20), L20610. http://dx.doi.org/10.1029/2004GL020813.
10. Gao S.S., Davis P.M., Liu H., Slack P.D., Zorin Yu.A., Mordvinova V.V., Kozhevnikov V.M., Meyer R.P., 1994. Seismic anisotropy and mantle flow beneath the Baikal rift zone. Nature 371 (6493), 149–151. http://dx.doi.org/10.1038/ 371149a0.
11. Kennett B.L.N., 1991. IASPEI91 Seismological Tables. Australian National University, Canberra, 167 p.
12. Kind R., Kosarev G.L., Petersen N.V., 1995. Receiver functions at the stations of the German Regional Seismic Network (GRSN). Geophysical Journal International 121 (1), 191–202. http://dx.doi.org/10.1111/j.1365-246X.1995.tb035 20.x.
13. Kosarev G.L., Petersen, N.V., Vinnik, L.P., Roecker S.W., 1993. Receiver functions for the Tien Shan analog broadband network: Contrasts in the evolution of structures across the Talass-Fergana fault. Journal of Geophysical Research 98 (B3), 4437–4448. http://dx.doi.org/10.1029/92JB02651.
14. Kozhevnikov V.M., Yanovskaya T.B., 2005. S-wave velocities distribution in the lithosphere of the Asian continent according to surface Rayleigh waves data. In: K.G. Levi, S.I. Sherman (Eds.), Actual problems of modern geodynamics of Central Asia. Publishing House of the Siberian Branch of the Russian Academy of sciences, Novosibirsk, p. 46–64 (in Russian) [Кожевников В.М., Яновская Т.Б. Распределение скоростей волн S в литосфере Азиатского континента по данным поверхностных волн Рэлея // Актуальные вопросы современной геодинамики Центральной Азии / Ред. К.Г. Леви, С.И. Шерман. Новосибирск: Изд-во СО РАН, 2005. С. 46–64].
15. Lobkovsky L.I., 1988. Geodynamics of Spreading and Subduction Zones and a Two-Layered Plate Tectonics. Nauka, Moscow, 251 p. (in Russian) [Лобковский Л.И. Геодинамика зон спрединга, субдукции и двухъярусная тектоника плит. М.: Наука, 1988. 251 с.].
16. Mazukabzov A.M., Donskaya T.V., Gladkochub D.P., Paderin I.P., 2010. The Late Paleozoic geodynamics of the West Transbaikalian segment of the Central Asian fold belt. Russian Geology and Geophysics 51 (5), 482–491. http://dx.doi.org/10.1016/j.rgg.2010.04.008.
17. Mel’nikova V.I., Radziminovich N.A., 2007. Parameters of seismotectonic deformations of the Earth’s crust in the Baikal Rift Zone based on seismological data. Doklady Earth Sciences 416 (1), 1137–1139. http://dx.doi.org/10.1134/ S1028334X07070355.
18. Mordvinova V.V., Artemyev A.A., 2010. The three-dimensional shear velocity structure of lithosphere in the southern Baikal rift system and its surroundings. Russian Geology and Geophysics 51 (6), 694–707. http://dx.doi.org/ 10.1016/j.rgg.2010.05.010.
19. Mordvinova V.V., Deschamps A., Dugarmaa T., Déverchère J., Ulziibat M., Sankov V.A., Artem'ev A.A., Perrot J., 2007. Velocity structure of the lithosphere on the 2003 Mongolian-Baikal transect from SV waves. Izvestiya, Physics of the Solid Earth 43 (2), 119–129. http://dx.doi.org/10.1134/S1069351307020036.
20. Mordvinova V.V., Treussov A.V., Turutanov E.K., 2015. Nature of the mantle plume under Hangai (Mongolia) based on seismic and gravimetric data. Doklady Earth Sciences 460 (1), 92–95. http://dx.doi.org/10.1134/S1028334X15 010201.
21. Mordvinova V.V., Vinnik L.P., Kosarev G.L., Oreshin S.I., Treusov A.V., 2000. Teleseismic tomography of the Baikal rift lithosphere. Doklady Earth Sciences 372 (4), 716–720.
22. Pavlenkova G.A., 2012. Upper mantle structure along super-long profile METEORITE (Siberian Craton) carried out with peace nuclear explosion. Geofizicheskiye issledovaniya (Geophysical Researches) 13 (4), 5–18 (in Russian) [Павленкова Г.А. Строение верхней мантии по сверхдлинному профилю МЕТЕОРИТ (Сибирский кратон), отработанному с мирными ядерными взрывами // Геофизические исследования. 2012. Т. 13. No 4. С. 5–18].
23. Pavlenkova G.A., Priestley K., Cipar J., 2002. 2D model of the crust and uppermost mantle along rift profile, Siberian craton. Tectonophysics 355 (1–4), 171–186. http://dx.doi.org/10.1016/S0040-1951(02)00140-3.
24. Puzyrev N.N. (Ed.), 1981. Interior of Baikal from Seismic Data. Nauka, Novosibirsk, 173 p. (in Russian) [Недра Байкала по сейсмическим данным / Ред. Н.Н. Пузырев. Новосибирск: Наука, 1981. 173 с.].
25. Puzyrev N.N. (Ed.), 1993. Detailed Seismic Studies of the Lithosphere Using P and S waves. Nauka, Novosibirsk, 199 p. (in Russian) [Детальные сейсмические исследования литосферы на Pи S-волнах / Ред. Н.Н. Пузырев. Новосибирск: Наука, 1993. 199 с.].
26. Puzyrev N.N., Mandelbaum M.M., Krylov S.V., Mishenkin B.P., Krupskaya G.V., Petrik G.V., 1974. Deep structure of the Baikal rift from the explosive seismology data. Geologiya i Geofizika (Russian Geology and Geophysics) (5), 155–167 (in Russian) [Пузырев Н.Н., Мандельбаум М.М., Крылов С.В., Мишенькин Б.П., Крупская Г.В., Петрик Г.В. Глубинное строение Байкальского рифта по данным взрывной сейсмологии // Геология и геофизика. 1974. No 5. С. 155–167].
27. Ritzwoller M.H., Levshin A.L., 1998. Eurasian surface wave tomography: Group velocities. Journal of Geophysical Research 103 (B3), 4839–4878. http://dx.doi.org/10.1029/97JB02622.
28. San’kov V.A., Lukhnev A.V., Parfeevets A.V., Miroshnichenko A.I., Ashurkov S.V., 2011. Coupling of the crustal and upper mantle deformations in the Mongolia-Siberian Mobile Area. Doklady Earth Sciences 436 (1), 159–164. http://dx.doi.org/10.1134/S1028334X11010302.
29. Scholz C.A., Klitgord K.D., Hutchinson D.H., ten Brink U.S., Zonenshain L.P., Golmschtok A.Y., Moore T.C., 1993. Results of 1992 seismic reflection experiment in Lake Baikal. Eos, Transactions American Geophysical Union 74 (41), 465– 470. http://dx.doi.org/10.1029/93EO00546.
30. Sklyarov E.V. (Ed.), 2006. Precambrian Evolution of Southern Part of the Siberian Craton. Publishing House of the Siberian Branch of the Russian Academy of sciences, Novosibirsk, 367 p. (in Russian) [Эволюция южной части Сибирского кратона в докембрии / Ред. Е.В. Скляров. Новосибирск: Изд-во СО РАН, 2006. 367 с.].
31. Stammler K., 1993. SeismicHandler – programmable multichannel data handler for interactive and automating processing of seismological analyses. Computers & Geosciences 19 (2), 135–140. http://dx.doi.org/10.1016/00983004(93)90110-Q.
32. Suvorov V.D., Mel’nik E.A., Mishen’kina Z.R., Pavlov E.V., Kochnev V.A., 2013. Seismic inhomogeneities in the upper mantle beneath the Siberian craton (Meteorite profile). Russian Geology and Geophysics 54 (9), 1108–1120. http://dx.doi.org/10.1016/j.rgg.2013.07.023.
33. Suvorov V.D., Mishen’kina Z.R., Melnik E.A., 2010. Upper mantle roots of Siberian craton basement structures along the Rift DSS profile. Russian Geology and Geophysics 51 (8), 885–897. http://dx.doi.org/10.1016/j.rgg.2010.07.004.
34. Suvorov V.D., Mishenkina Z.M., Petrick G.V., Sheludko I.F., Seleznev V.S., Solovyov V.M., 2002. Structure of the crust in the Baikal rift zone and adjacent areas from Deep Seismic Sounding data. Tectonophysics 351 (1–2), 61–74. http://dx.doi.org/10.1016/S0040-1951(02)00125-7.
35. Ten Brink U.S., Taylor M.H., 2002. Crustal structure of central Lake Baikal: Insights into intracontinental rifting. Journal of Geophysical Research 107 (B7), ETG 2-1–ETG 2-15. http://dx.doi.org/10.1029/2001JB000300.
36. Tiberi C., Diament M., De ́verche`re J., Petit-Mariani C., Mikhailov V., Tikhotsky S., Achauer U., 2003. Deep structure of the Baikal rift zone revealed by joint inversion of gravity and seismology. Journal of Geophysical Research 108 (B3), 2133. http://dx.doi.org/10.1029/2002JB001880.
37. Vinnik L.P., 1977. Detection of waves converted from P to SV in the mantle. Physics of the Earth and Planetary Interiors 15 (1), 39–45. http://dx.doi.org/10.1016/0031-9201(77)90008-5.
38. Yanovskaya T.B., Kozhevnikov V.M., 2003. 3D S–wave velocity pattern in the upper mantle beneath the continent of Asia from Rayleigh wave data. Physics of the Earth and Planetary Interiors 138 (3–4), 263–278. http://dx.doi.org/10.1016/S0031-9201(03)00154-7.
39. Zhao D., Lei J., Inoue T., Yamada A., Gao S.S., 2006. Deep structure and origin of the Baikal rift zone. Earth and Planetary Science Letters 243 (3), 681–691. http://dx.doi.org/10.1016/j.epsl.2006.01.033.
40. Zorin Y.A., Balk T.V., Novoselova M.R., Turutanov E.Kh., 1988. Lithospheric thickness beneath the Mongol-Siberian highlands and adjacent regions. Fizika Zemli (7), 33–42 (in Russian) [Зорин Ю.А., Балк Т.В., Новоселова М.Р., Турутанов Е.Х. Толщина литосферы под Монголо-Сибирской горной страной и сопредельными регионами // Физика Земли. 1988. No 7. С. 33–42].
41. Zorin Y.A., Mordvinova V.V., Turutanov E.K., Belichenko V.G., Artemyev A.A., Kosarev G.L., Gao S.S., 2002. Low seismic velocity layers in the Earth's crust beneath Eastern Siberia (Russia) and Central Mongolia: receiver function data and their possible geological implication. Tectonophysics 359 (3–4), 307–327. http://dx.doi.org/10.1016/S00401951(02)00531-0.
42. Zorin Yu.A., Turutanov E.Kh., Mordvinova V.V., Kozhevnikov V.M., Yanovskaya T.B., Treussov A.V., 2003. The Baikal rift zone: the effect of mantle plumes on older structure. Tectonophysics 371 (1–4), 153–173. http://dx.doi.org/ 10.1016/S0040-1951(03)00214-2.
Review
For citations:
Mordvinova V.V., Kobelev M.M., Treussov A.V., Khritova M.A., Trynkova D.S., Kobeleva E.A., Lukhneva O.F. DEEP STRUCTURE OF THE SIBERIAN PLATFORM – CENTRAL ASIAN MOBILE BELT TRANSITION ZONE FROM TELESEISMIC DATA. Geodynamics & Tectonophysics. 2016;7(1):85-103. (In Russ.) https://doi.org/10.5800/GT-2016-7-1-0198