AGE AND FORMATION CONDITIONS OF ROCKS IN THE OLKHON COMPLEX OF THE ANGA-SAKHYURTA ZONE (OLKHON TERRANE, CENTRAL ASIAN OROGENIC BELT)
https://doi.org/10.5800/GT-2025-16-6-0857
EDN: LZLQGB
Abstract
The paper presents detailed petrographic, geochemical, Sm-Nd isotope studies, as well as U-Pb (LA-ICPMS) geochronological studies of detrital zircon grains from gneisses of the Olkhon complex, distributed together with marbles and quartzites in the Anga-Sakhyurta zone of the Olkhon terrane of the Central Asian Orogenic Belt. Among the gneisses are scapolite-pyroxene-plagioclase, biotite-pyroxene-amphibole-plagioclase, garnet-biotite-amphibole-plagioclase, and pyroxene-amphibole-biotite-plagioclase varieties. Based on the concentrations of major oxides, the gneiss protoliths are reconstructed as carbonaceous, ferruginous siltstones and argillites, and as carbonate siltstones. The concentrations of most of the rare elements and their ratios in gneisses, including La/Sc, Zr/Sc, Th/Co, Ti/Zr, imply they may have resulted from mixing of mafic and felsic igneous rock materials. The analyzed gneisses have ɛNd(t) values of +1.3 and –5.6, which may indicate that the rocks of one composition or another contribute differently to their source. The age of most of the detrital zircon grains in scapolite-pyroxene-plagioclase gneiss varies from 552 to 922 Ma with maxima at 620 and 780 Ma. On the basis of the youngest detrital zircon age (552±8 Ma) and the age of metamorphism of the rocks of the Anga-Sakhyurta zone (460‒490 Ma), it may be concluded that the accumulation of sedimentary protoliths of the rocks of the Olkhon complex took place there during the interval 550 to 490 Ma. The totality of geochronological data on the gneisses from the Olkhon and Shebarta complexes of the Anga-Sakhyurta zone implies age-related similarity in the accumulation of protoliths of metamorphic rocks of both complexes (Cambrian), as well as their formation as a result of the destruction of similar, predominantly Neoproterozoic source rocks, which could be rocks of the Neoproterozoic composite superterrane, attached to the Siberian Craton at the 600‒610 Ma. The accumulation of sedimentary protoliths of the Olkhon and Shebarta complexes took place in a single marine basin facing away from the Neoproterozoic superterrane towards the Paleo-Asian Ocean. On the basis that metagabbroids and metahyperbasites with subduction-related geochemical characteristics are associated with the metasedimentary rocks of the Olkhon complex, this sedimentary basin can be considered as a back-arc basin that emerged as a result of initiation of subduction zones in the Paleo-Asian Ocean. Late Cambrian – Ordovician accretionary-collisional events associated with the accretion of island-arc systems of the Paleo-Asian Ocean to the Siberian Craton, as well as the accompanying shear tectogenesis, led to a violation in the initial location of rock associations of the Olkhon and Shebarta complexes, their tectonic mixing, and, accordingly, to the formation of the collisional collage of the Anga-Sakhyurta zone of the Olkhon terrane of the Central Asian Orogenic Belt.
About the Authors
T. V. DonskayaRussian Federation
128 Lermontov St, Irkutsk 664033
Competing Interests:
The authors declare that they have no conflicts of interest relevant to this manuscript.
D. P. Gladkochub
Russian Federation
128 Lermontov St, Irkutsk 664033
Competing Interests:
The authors declare that they have no conflicts of interest relevant to this manuscript.
A. M. Mazukabzov
Russian Federation
128 Lermontov St, Irkutsk 664033
Competing Interests:
The authors declare that they have no conflicts of interest relevant to this manuscript.
E. V. Sklyarov
Russian Federation
128 Lermontov St, Irkutsk 664033
1 Pirogov St, Novosibirsk 630090
Competing Interests:
The authors declare that they have no conflicts of interest relevant to this manuscript.
U. S. Efremova
Russian Federation
128 Lermontov St, Irkutsk 664033
Competing Interests:
The authors declare that they have no conflicts of interest relevant to this manuscript.
A. V. Lavrenchuk
Russian Federation
3 Academician Koptyug Ave, Novosibirsk 630090
1 Pirogov St, Novosibirsk 630090
Competing Interests:
The authors declare that they have no conflicts of interest relevant to this manuscript.
E. I. Demonterova
Russian Federation
128 Lermontov St, Irkutsk 664033
Competing Interests:
The authors declare that they have no conflicts of interest relevant to this manuscript.
References
1. Andreev A.A., Rytsk E.Yu., Velikoslavinskii S.D., Tolmacheva E.V., Bogomolov E.S., Lebedeva Y.M., Fedoseenko A.M., 2022. Age, Composition, and Tectonic Setting of the Formation of Late Neoproterozoic (Late Baikalian) Complexes in the Kichera Zone, Baikal-Vitim Belt, Northern Baikal Area: Geological, Geochronological, and Nd Isotope Data. Petrology 30 (4), 337–368. https://doi.org/10.1134/S0869591122040026.
2. Bhatia M.R., Сrook K.A.W., 1986. Trace Element Characteristics of Greywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology 92 (2), 181–193. https://doi.org/10.1007/BF00375292.
3. Bibikova E.V., Karpenko S.F., Sumin L.V., Bogdanovsky O.G., Kirnozova T.I., Lyalikov A.V., Makarov V.A., Arakelyants M.M., Korikovsky S.P., Fedorovsky V.S., 1990. U-Pb, Sm-Nd, Pb-Pb and K-Ar Ages of Metamorphic and Igneous Rocks of the Olkhon Region (Western Baikal Region). In: Geology and Geochronology of the Precambrian of the Siberian Platform and Its Framing. Nauka, Leningrad, p. 170–183 (in Russian)
4. Chugaev A.V., Chernyshev I.V., Rytsk E.Y., Salnikova E.B., Nosova A.A., Travin A.V., Kotov A.B., Fedoseenko A.M., Anisimova I.V., 2019. Relationship Between Magmatic, Metamorphic, and Hydrothermal Processes Within the Baikal-Muya Terrane (Eastern Siberia): Constraints from High-Precision Geochronological Study of the Kedrovskii Granitoid Massif. Doklady Earth Sciences 489 (1), 1363−1367. https://doi.org/10.1134/S1028334X19110199.
5. Condie K.C., 1993. Chemical Composition and Evolution of the Upper Continental Crust: Contrasting Results from Surface Samples and Shales. Chemical Geology 104 (1–4), 1–37. https://doi.org/10.1016/0009-2541(93)90140-E.
6. Cullers R.L., 2002. Implications of Elemental Concentrations for Provenance, Redox Conditions, and Metamorphic Studies of Shales and Limestones near Pueblo, CO, USA. Chemical Geology 191 (4), 305–327. https://doi.org/10.1016/S0009-2541(02)00133-X.
7. Donskaya T.V., Gladkochub D.P., Fedorovsky V.S., Mazukabzov A.M., Cho M., Cheong W., Kim J., 2013. Synmetamorphic Granitoids (~490 Ma) as Accretion Indicators in the Evolution of the Ol’khon Terrane (Western Cisbaikalia). Russian Geology and Geophysics 54 (10), 1205–1218. https://doi.org/10.1016/j.rgg.2013.09.006.
8. Donskaya T.V., Gladkochub D.P., Fedorovsky V.S., Sklyarov E.V., Cho M., Sergeev S.A., Demonterova E.I., Mazukabzov A.M. et al., 2017. Pre-Collisional (>0.5 Ga) Complexes of the Olkhon Terrane (Southern Siberia) as an Echo of Events in the Central Asian Orogenic Belt. Gondwana Research 42, 243–263. https://doi.org/10.1016/j.gr.2016.10.016.
9. Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., Sklyarov E.V., Efremova U.S., Lavrenchuk A.V., Demonterova E.I., 2024. Pre-Collisional History of the Olkhon Terrane: Age and Formation Conditions of Rocks of the Olkhon Complex. In: Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent). Proceedings of Scientific Meeting (October 15–19, 2024). Iss. 22. IEC SB RAS, Irkutsk, p. 100–103 (in Russian)
10. Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., Sklyarov E.V., Khubanov V.B., Demonterova E.I., Motova Z.L., 2022. Metaterrigenious Rocks of the Olkhon Terrane of the Central Asian Orogenic Belt: U-Pb Zircon Age, Geochemical Characteristics, and Formation Models of Sedimentary Protoliths. Geodynamics & Tectonophysics 13 (3), 0635 (in Russian) https://doi.org/10.5800/gt-2022-13-3-0635.
11. Donskaya T.V., Sklyarov E.V., Gladkochub D.P., Mazukabzov A.M., Sal’nikova E.B., Kovach V.P., Yakovleva S.Z., Berezhnaya N.G., 2000. The Baikal Collisional Metamorphic Belt. Doklady Earth Sciences 374 (1), 1075–1079.
12. Fedorovsky V.S., Donskaya T.V., Gladkochub D.P., Khromykh S.V., Mazukabzov A.M., Mekhonoshin A.S., Sklyarov E.V., Sukhorukov V.P., Vladimirov A.G., Volkova N.I., Yudin D.S., 2005. The Ol’khon Collision System (Baikal Region). In: E.V. Sklyarov (Ed.), Structural and Tectonic Correlation Across the Central Asia Orogenic Collage: North-Eastern Segment. Guidebook and Abstract Volume of the Siberian Workshop IGCP 480 (July 25 – August 6, 2005, Irkutsk – Ulan-Ude, Russia). IEC SB RAS, Irkutsk, p. 5–76.
13. Fedorovsky V.S., Sklyarov E.V., Gladkochub D.P., Mazukabzov A.M., Donskaya T.V., Lavrenchuk A.V., Starikova A.E., Dobretsov N.L., Kotov A.B., Tevelev Ark.V., 2020. Collision System of West Pribaikalie: Aerospace Geological Map of Olkhon Region (Baikal, Russia). Geodynamics & Tectonophysics 11 (3), 447–452 (in Russian) https://doi.org/10.5800/GT-2020-11-3-0485.
14. Fedorovsky V.S., Sklyarov E.V., Izokh A.E., Kotov A.B., Lavrenchuk A.V., Mazukabzov A.M., 2010. Strike-Slip Tectonics and Subalkaline Mafic Magmatism in the Early Paleozoic Collisional System of the Western Baikal Region. Russian Geology and Geophysics 51 (5), 534–547. https://doi.org/10.1016/j.rgg.2010.04.009.
15. Gladkochub D.P., Donskaya T.V., Cho M., Fedorovsky V.S., Mazukabzov A.M., Cheong W., Kim J., 2017. First Data on the Age of Rocks from the Northern Flank of the Olkhon Terrane, Western Baikal Area. Doklady Earth Sciences 476 (1), 1021−1025. https://doi.org/10.1134/S1028334X17090240.
16. Gladkochub D.P., Donskaya T.V., Fedorovskii V.S., Mazukabzov A.M., Sklyarov E.V., Lavrenchuk A.V., Lepekhina E.N., 2014. Fragment of the Early Paleozoic (~500 Ma) Island Arc in the Structure of the Olkhon Terrane, Central Asian Fold Belt. Doklady Earth Sciences 457 (2), 905–909. https://doi.org/10.1134/S1028334X14080042.
17. Gladkochub D.P., Donskaya T.V., Fedorovsky V.S., Mazukabzov A.M., Larionov A.N., Sergeev S.A., 2010. The Olkhon Metamorphic Terrane in the Baikal Region: An Early Paleozoic Collage of Neoproterozoic Active Margin Fragments. Russian Geology and Geophysics 51 (5), 447−460. https://doi.org/10.1016/j.rgg.2010.04.001.
18. Gladkochub D.P., Donskaya T.V., Fedorovsky V.S., Mazukabzov A.M., Wingate M.T.D., Poller U., Todt W., 2008a. New Data on the Age and Protolith of Granulites of the Olkhon Collisional System (Baikal Region). Doklady Earth Sciences 419 (2), 417−422. https://doi.org/10.1134/S1028334X08030148.
19. Gladkochub D.P., Donskaya T.V., Mazukabzov A.M., 2015. Palaeozoic ‒ Mesozoic Geology and Tectonics of the Western Transbaikalian Segment of the Central Asian Orogenic Belt. In: A. Kröner (Ed.), Geology, Evolution, Tectonics, and Models. Schweizerbart Science Publishers, Stuttgart, p. 154–183.
20. Gladkochub D.P., Donskaya T.V., Stanevich A.M., Pisarevsky S.A., Zhang S., Motova Z.L., Mazukabzov A.M., Li H., 2019. U-Pb Detrital Zircon Geochronology and Provenance of Neoproterozoic Sedimentary Rocks in Southern Siberia: New Insights Into Breakup of Rodinia and Opening of Paleo-Asian Ocean. Gondwana Research 65, 1–16. https://doi.org/10.1016/j.gr.2018.07.007.
21. Gladkochub D.P., Donskaya T.V., Wingate M.T.D., Poller U., Krӧner A., Fedorovsky V.S., Mazukabzov A.M., Todt W., Pisarevsky S.A., 2008b. Petrology, Geochronology, and Tectonic Implications of c. 500 Ma Metamorphic and Igneous Rocks Along the Northern Margin of the Central-Asian Orogen (Olkhon Terrane, Lake Baikal, Siberia). Journal of the Geological Society 165, 235–246. https://doi.org/10.1144/0016-76492006-125.
22. Goldstein S.J., Jacobsen S.B., 1988. Nd and Sm Isotopic Systematics of Rivers Water Suspended Material: Implications for Crustal Evolution. Earth and Planetary Science Letters 87 (3), 249–265. https://doi.org/10.1016/0012-821X(88)90013-1.
23. Horstwood M.S.A., Kosler J., Gehrels G., Jackson S.E., McLean N.M., Paton Ch., Pearson N.J., Sircombe K. et al., 2016. Community-Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology – Uncertainty Propagation, Age Interpretation and Data Reporting. Geostandards and Geoanalytical Research 40 (3), 311–332. https://doi.org/10.1111/j.1751-908X.2016.00379.x.
24. Jacobsen S.B., Wasserburg G.J., 1984. Sm-Nd Evolution of Chondrites and Achondrites. Earth and Planetary Science Letters 67 (2), 137–150. https://doi.org/10.1016/0012-821X(84)90109-2.
25. Kröner A., Fedotova A.A., Khain E.V., Razumovskiy A.A., Orlova A.V., Anosova M.O., Perelyaev V.I., Nekrasov G.E., Liu D.Y., 2015. Neoproterozoic Ophiolite and Related High-Grade Rocks of the Baikal-Muya Belt, Siberia: Geochronology and Geodynamic Implications. Journal of Asian Earth Sciences 111, 138‒160. https://doi.org/10.1016/j.jseaes.2015.07.033.
26. Lavrenchuk A.V., Sklyarov E.V., Izokh A.E., Kotov A.B., Sal’nikova E.B., Fedorovsky V.S., Mazukabzov A.M., 2017. Compositions of Gabbro Intrusions in the Krestovsky Zone (Western Baikal Region): A Record of Plume–Suprasubduction Mantle Interaction. Russian Geology and Geophysics 58 (10) 1139–1153. https://doi.org/10.1016/j.rgg.2017.09.001.
27. Lavrenchuk A.V., Sklyarov E.V., Izokh A.E., Kotov A.B., Vasyukova E.A., Fedorovskii V.S., Gladkochub D.P., Donskaya T.V., Mazukabzov A.M., 2019. Birkhin Volcanoplutonic Association, Ol’khon Region, Western Baikal Area: Petrological Criteria of Comagmatic Origin. Petrology 27, 291–306. https://doi.org/10.1134/S0869591119030044.
28. Li X.C., Yu J.H., Sang L.Q., Luo L., Zhu G.R., 2009. Granulite Facies Metamorphism of the Olkhon Terrane in Southern Siberian Craton and Tectonic Significance. Acta Petrologica Sinica 25 (12), 3346−3356.
29. Li Z.-Y., Jiang Y., Collett S., Štípská P., Schulmann K., Wang S., Sukhorukov V., 2023a. Metamorphic and Chronological Constraints on the Early Paleozoic Tectono-Thermal Evolution of the Olkhon Terrane, Southern Siberia. Journal of Metamorphic Geology 41 (4), 525–556. https://doi.org/10.1111/jmg.12706.
30. Li Z.-Y., Jiang Y., Collett S., Štípská P., Schulmann K., Wang S., Sukhorukov V., Bai X.-J., Zhang W.-F., 2023b. Peri-Siberian Ordovician to Devonian Tectonic Switching in the Olkhon Terrane (Southern Siberia): Structural and Geochronological Constraints. Tectonics 42 (10), e2023TC007826. https://doi.org/10.1029/2023TC007826.
31. Ludwig K.R., 2012. ISOPLOT 3.75. A Geochronological Toolkit for Microsoft Excel. User’s Manual. Berkeley Geochronology Center Special Publication 5, 75 p.
32. Makrygina V.A., Antipin V.S., 2018. The Geochemistry and Petrology of Metamorphic and Magmatic Rocks at the Ol’khon Region, Cisbaikalia. In: M.I. Kuzmin (Ed.). GEO, Novosibirsk, 248 p. (in Russian)
33. Makrygina V.A., Belichenko V.G., Reznitsky L.Z., 2007. Types of Paleoisland Arcs and Back-Arc Basins in the Northeast of the Paleoasian Ocean (from Geological Data). Russian Geology and Geophysics 48 (1), 107–119. https://doi.org/10.1016/j.rgg.2006.12.010.
34. Makrygina V.A., Tolmacheva E.V., Lepekhina E.N., 2014. Crystallization History of Paleozoic Granitoids in the Ol’khon Region, Lake Baikal (SHRIMP-II Zircon Dating). Russian Geology and Geophysics 55 (1), 33‒45. https://doi.org/10.1016/j.rgg.2013.12.010.
35. McLennan S.M., Hemming S., McDaniel D.K., Hanson G.N., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. In: M.J. Johnsson, A. Basu (Eds), Processes Controlling the Composition of Clastic Sediments. Geological Society of America Special Paper 248, 21–40. https://doi.org/10.1130/SPE284-p21.
36. Mekhonoshin A.S., Vladimirov A.G., Vladimirov V.G., Volkova N.I., Kolotilina T.B., Mikheev E.I., Travin A.V., Yudin D.S., Khlestov V.V., Khromykh S.V., 2013. Restitic Ultramafic Rocks in the Early Caledonian Collisional System of Western Cisbaikalia. Russian Geology and Geophysics 54 (10), 1219−1235. https://doi.org/10.1016/j.rgg.2013.09.007.
37. Metelkin D.V., 2013. Kinematic Reconstruction of the Early Caledonian Accretion in the Southwest of the Siberian Paleocontinent Based on Paleomagnetic Results. Russian Geology and Geophysics 54 (4), 381–398. https://doi.org/10.1016/j.rgg.2013.03.002.
38. Metelkin D.V., Vernikovsky V.A., Kazansky A.Yu., 2012. Tectonic Evolution of the Siberian Paleocontinent from the Neoproterozoic to the Late Mesozoic: Paleomagnetic Record and Reconstructions. Russian Geology and Geophysics 53 (7), 675–688. https://doi.org/10.1016/j.rgg.2012.05.006.
39. Motova Z.L., Donskaya T.V., Gladkochub D.P., Khubanov V.B., 2024. U-Pb Ages of Detrital Zircons and Composition of Clastic Sedimentary Rocks from the Southern Periphery of the Siberian Craton: Implications for the Earliest Cambrian Evolution of Southern Siberia. Journal of Asian Earth Sciences 264, 106048. https://doi.org/10.1016/j.jseaes.2024.106048.
40. Neelov A.N., 1980. Petrochemical Classification of Metamorphosed Sedimentary and Volcanic Rocks. Nauka, Leningrad, 100 p. (in Russian)
41. Nozhkin A.D., Turkina O.M., Dmitrieva N.V., Travin A.V., Likhanov I.I., 2018. Metacarbonate-Terrigenous Complex of the Derba Block (East Sayan): Petrogeochemical and Isotope Parameters, Metamorphism, and Time of Formation. Russian Geology and Geophysics 59 (6), 652−672. https://doi.org/10.1016/j.rgg.2018.05.005.
42. Panteeva S.V., Gladkochoub D.P., Donskaya T.V., Markova V.V., Sandimirova G.P., 2003. Determination of 24 Trace Elements in Felsic Rocks by Inductively Coupled Plasma Mass Spectrometry After Lithium Metaborate Fusion. Spectrochimica Acta Part B: Atomic Spectroscopy 58 (2), 341–350. https://doi.org/10.1016/S0584-8547(02)00151-9.
43. Pashkova G.V., Panteeva S.V., Ukhova N.N., Chubarov V.M., Finkelshtein A.L., Ivanov A.V., Asavin A.M., 2019. Major and Trace Elements in Meimechites – Rarely Occurring Volcanic Rocks: Developing Optimal Analytical Strategy. Geochemistry: Exploration, Environment, Analysis 19 (3), 233–243. https://doi.org/10.1144/geochem2017-099.
44. Paton Ch., Hellstrom J., Paul B., Woodhead J., Hergt J., 2011. Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data. Journal of Analytical Atomic Spectrometry 26 (11), 2508–2518. https://doi.org/10.1039/C1JA10172B.
45. Pin C., Zalduegui J.F.S., 1997. Sequential Separation of Light Rare-Earth Elements, Thorium and Uranium by Miniaturized Extraction Chromatography: Application to Isotopic Analyses of Silicate Rocks. Analytica Chimica Acta 339 (1–2), 79–89. https://doi.org/10.1016/S0003-2670(96)00499-0.
46. Poller U., Gladkochub D., Donskaya T., Mazukabzov A., Sklyarov E., Todt W., 2005. Multistage Magmatic and Metamorphic Evolution in the Southern Siberian Craton: Archean and Palaeoproterozoic Zircon Ages Revealed by SHRIMP and TIMS. Precambrian Research 136 (3–4), 353–368. https://doi.org/10.1016/j.precamres.2004.12.003.
47. Powerman V., Shatsillo A., Chumakov N., Kapitonov I., Hourigane J., 2015. Interaction Between the Central Asian Orogenic Belt (CAOB) and the Siberian Craton as Recorded by Detrital Zircon Suites from Transbaikalia. Precambrian Research 267, 39–71. https://doi.org/10.1016/j.precamres.2015.05.015.
48. Powerman V.I., Buyantuev M., Ivanov A.V., 2021. A Review of Detrital Zircon Data Treatment, and Launch of a New Tool "Dezirteer" Along with the Suggested Universal Workflow. Chemical Geology 583, 120437. https://doi.org/10.1016/j.chemgeo.2021.120437.
49. Ruzhentsev S.V., Minina O.R., Nekrasov G.E., Aristov V.A., Golionko B.G., Doronina N.A., Lykhin D.A., 2012. The Baikal-Vitim Fold System: Structure and Geodynamic Evolution. Geotectonics 46 (2), 81–110. https://doi.org/10.1134/S0016852112020033.
50. Rytsk E.Yu., Amelin Yu.V., Rizvanova N.G., Krimsky R.Sh., Mitrofanov G.L., Mitrofanova N.N., Perelyaev V.I., Shalaev V.S., 2001. Age of Rocks in the Baikal-Muya Foldbelt. Stratigraphy and Geological Correlation 9 (4), 315–326.
51. Rytsk E.Yu., Kovach V.P., Kovalenko V.I., Yarmolyuk V.V., 2007. Structure and Evolution of the Continental Crust in the Baikal Fold Region. Geotectonics 41 (6), 440–464. http://doi.org/10.1134/S0016852107060027.
52. Rytsk E.Yu., Kovach V.P., Makeev A.F., Bogomolov E.S., Rizvanova N.G., 2009. The Eastern Boundary of the Baikal Collisional Belt: Geological, Geochronological, and Nd Isotopic Evidence. Geotectonics 43 (4), 264–273. https://doi.org/10.1134/S0016852109040025.
53. Rytsk E.Yu., Kovach V.P., Yarmolyuk V.V., Kovalenko V.I., Bogomolov E.S., Kotov A.B., 2011. Isotopic Structure and Evolution of the Continental Crust in the East Transbaikalian Segment of the Central Asian Foldbelt. Geotectonics 45, 349–377. https://doi.org/10.1134/S0016852111050037.
54. Rytsk E.Yu., Rizvanova N.G., Sal’nikova E.B., Makeev A.F., Yakovleva S.Z., Shalaev V.S., 2000. Age Boundaries of Late Precambrian Felsic Volcanism in the Baikal Folded Region (Results of the U-Pb Research of Zircons). In: Isotope Dating of Geological Processes: New Methods and Results. Abstracts of I Russian Conference on Isotope Geochronology (November 15–17, 2000). GEOS, Moscow, p. 315–317 (in Russian)
55. Sklyarov E.V., Fedorovsky V.S., Kotov A.B., Lavrenchuk A.V., Mazukabzov A.M., Levitsky V.I., Sal’nikova E.B., Starikova A.E. et al., 2009. Carbonatites in Collisional Settings and Pseudo-Carbonatites of the Early Paleozoic Ol’khon Collisional System. Russian Geology and Geophysics 50 (12), 1091–1106. https://doi.org/10.1016/j.rgg.2009.11.008.
56. Sklyarov E.V., Fedorovsky V.S., Lavrenchuk A.V., Starikova A.E., Kotov A.B., Mazukabzov A.M., 2013. Aerospace Geological Map of Anga – Begul Interfluve (Baikal). The Right Anga Zone. Copymaster Center, Moscow.
57. Sklyarov E.V., Lavrenchuk A.V., Fedorovsky V.S., Gladkochub D.P., Donskaya T.V., Kotov A.B., Mazukabzov A.M., Starikova A.E., 2020a. Regional, Contact Metamorphism, and Autometamorphism of the Olkhon Terrane (West Baikal Area). Petrology 28, 47–61. https://doi.org/10.1134/S0869591120010051.
58. Sklyarov E.V., Lavrenchuk A.V., Fedorovsky V.S., Pushkarev E.V., Semenova D.V., Starikova A.E., 2020b. Dismembered Ophiolite of the Olkhon Composite Terrane (Baikal, Russia): Petrology and Emplacement. Minerals 10 (4), 305. https://doi.org/10.3390/min10040305.
59. Sláma J., Košler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A. et al., 2008. Plešovice Zircon – A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology 249 (1–2), 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005.
60. Somsikova A.V., Kostitsyn Yu.A., Fedotova A.A., Razumovskiy A.A., Khain E.V., Astrakhantsev O.V., Batanova V.G., Anosova M.O., 2021. Late Neoprotherozoic Granitoid Magmatism of the Baikal-Muya Fold Belt, Ophiolite and Post-Ophiolite Plagiogranites. Geochemistry International 59 (1), 12–31. https://doi.org/10.1134/S0016702921010109.
61. Starikova A.E., Sklyarov E.V., Kotov A.B., Salnikova E.B., Fedorovskii V.S., Lavrenchuk A.V., Mazukabzov A.M., 2014. Vein Calciphyre and Contact Mg Skarn from the Tazheran Massif (Western Baikal Area, Russia): Age and Genesis. Doklady Earth Sciences 457, 1003–1007. https://doi.org/10.1134/S1028334X14080182.
62. Vermeesch P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers 9 (5), 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001.
63. Villa I.M., Holden N.E., Possolo A., Ickert R.B., Hibbert D.B., Renne P.R., 2020. IUPAC-IUGS Recommendation on the Half-Lives of 147Sm and 146Sm. Geochimica et Cosmochimica Acta 285, 70–77. https://doi.org/10.1016/j.gca.2020.06.022.
64. Vladimirov A.G., Khromykh S.V., Mekhonoshin A.S., Volkova N.I., Travin A.V., Yudin D.S., Kruk N.N., 2008. U-Pb Dating and Sm-Nd Systematics of Igneous Rocks in the Ol’khon Region (Western Baikal Coast). Doklady Earth Sciences 423 (2), 1372−1375. https://doi.org/10.1134/S1028334X08090092.
65. Vladimirov A.G., Volkova N.I., Mekhonoshin A.S., Travin A.V., Vladimirov V.G., Khromykh S.V., Yudin D.S., Kolotilina T.B., 2011. The Geodynamic Model of Formation of Early Caledonides in the Olkhon Region (West Pribaikalie). Doklady Earth Sciences 436 (2), 203–209. https://doi.org/10.1134/S1028334X10901234.
66. Volkova N.I., Mikheev E.I., Travin A.V., Vladimirov A.G., Mekhonoshin A.S., Khlestov V.V., 2021. P-T Conditions, U/Pb and 40Ar/39Ar Isotopic Ages of UHT Granulites from Cape Kaltygei, Western Baikal Region. Geodynamics & Tectonophysics 12 (2), 310–331 (in Russian) https://doi.org/10.5800/GT-2021-12-2-0526.
67. Volkova N.I., Vladimirov A.G., Travin A.V., Mekhonoshin A.S., Khromykh S.V., Yudin D.S., Rudnev S.N., 2010. U-Pb Isotopic Dating of Zircons (SHRIMP-II) from Granulites of the Ol’khon Region of Western Baikal Area. Doklady Earth Sciences 432 (2), 821–824. https://doi.org/10.1134/S1028334X10060243.
68. Wakita H., Rey P., Schmitt R.A., 1971. Abundances of the 14 Rare-Earth Elements and 12 Other Trace Elements in Apollo 12 Samples: Five Igneous and One Breccia Rocks and Four Soils. In: Proceedings of the Second Lunar Science Conference. Vol. 2. MIT Press, Cambridge, p. 1319–1329.
69. Warr L.N., 2021. IMA–CNMNC Approved Mineral Symbols. Mineralogical Magazine 85 (3), 291–320. https://doi.org/10.1180/mgm.2021.43.
70. Windley B.F., Alexeiev D., Xiao W., Kröner A., Badarch G., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society of London 164 (1), 31–47. http://doi.org/10.1144/0016-76492006-022.
71. Zonenshain L.P., Kuzmin M.I., Natapov L.M., 1990. Geology of the USSR: A Plate Tectonic Synthesis. American Geophysical Union, Washington, 242 p. https://doi.org/10.1029/GD021.
Review
For citations:
Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., Sklyarov E.V., Efremova U.S., Lavrenchuk A.V., Demonterova E.I. AGE AND FORMATION CONDITIONS OF ROCKS IN THE OLKHON COMPLEX OF THE ANGA-SAKHYURTA ZONE (OLKHON TERRANE, CENTRAL ASIAN OROGENIC BELT). Geodynamics & Tectonophysics. 2025;16(6):857. (In Russ.) https://doi.org/10.5800/GT-2025-16-6-0857. EDN: LZLQGB












































