SLOW SLIP EVENTS: PARAMETERS, CONDITIONS OF OCCURRENCE, AND FUTURE RESEARCH PROSPECTS
https://doi.org/10.5800/GT-2014-5-4-0160
Abstract
Slow slip events along faults and fractures are reviewed. Such inter-block displacements can be recorded at various scale levels and considered as transitional from quasi-stable (creep) to dynamic slip (earthquake). Such events include seismogenic slip along faults at velocities by one to three orders lower than those in case of 'normal' earthquakes, as well as aseismic slip cases. Discovering such events facilitates better understanding of how energy accumulated during deformation of the crust is released.
Studying conditions and the evolution of transitional regimes can provide new important information on the structure and regularities of deformation in fault zones.
Data from latest publications by different authors are consolidated, and the data analysis results are presented. Over 170 slow slip events are reviewed. Based on the consolidated data and modelling results obtained by the authors, relationships between parameters of the reviewed process are established, scale relations between the events are considered, and a first-approximation analysis is conducted for impacts of geomaterial characteristics on various deformation regimes.
Low-frequency earthquake foci and slow slip sites are most typically located in zones of transition from stable creep areas to seismogenic segments of the discontinuity (Fig. 3) It can be logically supposed that in such transitional zones, the interface has specific frictional properties providing for a regime that can be termed as 'conditionally stable slip'.
The duration of slow deformation events is roughly proportional to the released seismic moment, while such a ratio is close to self-similarity in case of 'normal' earthquakes (Fig. 4). In case of slow slip, an area of the displaced section is larger by many factors than the corresponding value for an earthquake with the same seismic moment, while an average displacement amplitude along the fault is significantly smaller (Figures 5 and 6). Velocities of slip propagation along the fault strike are variable from a few hundred metres to 20–30 km/day. Slip velocities tend to decrease with scale (Fig. 7).
Various slip modes were realized in laboratory experiments with slider model. Main specific features of slow slip along faults were simulated in the laboratory conditions. Possibilities for implementation of different deformation regimes were mainly determined by structure of simulated fault gouge. At equal Coulombic strength, small variations of structural characteristics, such as granulometric composition, grain shape, presence of fluid and its viscosity, may critically impact the deformation mode (Fig. 12).
As evidenced by the data consolidated and analysed in this article, conditionally stable regimes of deformation of crustal discontinuities are a common phenomenon. Studies of such transitional deformation regimes seem promising for establishment of regularities in generation and evolution of dynamic events, such earthquakes, tectonic rock bursts, and slope events.
About the Authors
G. G. KocharyanRussian Federation
Doctor of Physics and Mathematics, Professor, Head of Laboratory
Institute of Geosphere Dynamics RAS
Building 1, 38 Leninsky prospect, Moscow 119334, Russia
Tel.: (495)9397527
S. B. Kishkina
Russian Federation
Candidate of Physics and Mathematics, Lead Researcher
Institute of Geosphere Dynamics RAS
Building 1, 38 Leninsky prospect, Moscow 119334, Russia
Tel.: (495)9397573
V. A. Novikov
Russian Federation
Candidate of Engineering Sciences, Head of Laboratory
Joint Institute for High Temperatures RAS
Building 2, 19 Izhorskaya street. Moscow 125412, Russia
A. A. Ostapchuk
Russian Federation
Junior Researcher
Institute of Geosphere Dynamics RAS
Building 1, 38 Leninsky prospect, Moscow 119334, Russia
Tel.: (495)9397511
References
1. Beavan J., Wallace L., Douglas A., Fletcher H., Townend J., 2007. Slow slip events on the Hikurangi subduction interface, New Zealand. In: P. Tregoning, C. Rizos (Eds.), Dynamic planet: monitoring and understanding a dynamic planet with geodetic and oceanographic tools: IAG Symposium, Cairns, Australia, 22–26 August 2005. International Association of Geodesy Symposia, Vol. 130. Springer, New York, p. 438–444. http://dx.doi.org/10.1007/978-3-540-49350-1_64.
2. Brown K.M., Tryon M.D., DeShon H.R., Dorman L.M., Schwartz S.Y., 2005. Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone. Earth and Planetary Science Letters 238 (1), 189–203. http://dx.doi.org/ 10.1016/j.epsl.2005.06.055.
3. Brudzinski M.R., Allen R., 2006. Segmentation in episodic tremor and slip all along Cascadia. Eos, Transactions, American Geophysical Union 87 (52), Fall Meeting Supplies, Abstract T53G-05.
4. Bürgmann R., Kogan M.G., Levin V.E., Scholz C.H., King R.W., Steblov G.M., 2001. Rapid aseismic moment release following the 5 December 1997 Kronotsky Kamchatka earthquake, Geophysical Research Letters 28 (7), 1331–1334. http://dx. doi.org/10.1029/2000GL012350.
5. Correa-Mora F., De Mets C., Cabral-Cano E., Diaz-Molina O., Marquez-Azua B., 2009. Transient deformation in southern Mexico in 2006 and 2007: Evidence for distinct deep-slip patches beneath Guerrero and Oaxaca. Geochemistry, Geophysics, Geosystems 10 (2), Q02S12. http://dx.doi.org/10.1029/2008GC002211.
6. Correa-Mora F., De Mets C., Cabral-Cano E., Marquez-Azua B., Diaz-Molina O., 2008. Interplate coupling and transient slip along the subduction interface beneath Oaxaca, Mexico. Geophysical Journal International. http://dx.doi.org/10. 1111/j.1365-246X.2008.03910.x.
7. Cotton F., Vergnolle M., Thollon O., Campillo M., Manighetti I., Cotte N., Walpersdorf A., Kostoglodov V., 2008. Comparison of slip distribution of large slow slip events in Guerrero subduction zone. Eos, Transactions, American Geophysical Union 89 (52), Fall Meeting Supplies, Abstract U33A‐0039.
8. Douglas A., Beavan J., Wallace L., Townend J., 2005. Slow slip on the northern Hikurangi subduction interface, New Zea-land. Geophysical Research Letters 32 (16) L16305. http://dx.doi.org/10.1029/2005GL023607.
9. Dragert H., Wang K., James T.S., 2001. A silent slip event on the deeper Cascadia subduction interface. Science 292 (5521), 1525–1528. http://dx.doi.org/10.1126/science.1060152.
10. Dragert H., Wang K., Rogers G., 2004. Geodetic and seismic signatures of episodic tremor and slip in the northern Cascadia subduction zone. Earth, Planets and Space 56 (12), 1143–1150.
11. Fu Y., Freymueller J.T., 2013. Repeated large slow slip events at the southcentral Alaska subduction zone. Earth and Planetary Science Letters 375, 303–311. http://dx.doi.org/10.1016/j.epsl.2013.05.049.
12. Heki K., Kataoka T., 2008. On the biannually repeating slow-slip events at the Ryukyu Trench, southwestern Japan. Journal of Geophysical Research 113 (B11), B11402. http://dx.doi.org/10.1029/2008JB005739.
13. Heki K., Miyazaki S., Tsuji H., 1997. Silent fault slip following an interpolate thrust earthquake at the Japan Trench. Nature 386 (6625), 595–598. http://dx.doi.org/10.1038/386595a0.
14. Hirose H., Hirahara K., Kimata F., Fujii N., Miyazaki S., 1999. A slow thrust slip event following the two 1996 Hyuganada earthquakes beneath the Bungo Channel, southwest Japan. Geophysical Research Letters 26 (21), 3237–3240. http://dx. doi.org/10.1029/1999GL010999.
15. Hirose H., Matsuzawa T., Kimura T., Kimura H., 2014. The Boso slow slip events in 2007 and 2011 as a driving process for the accompanying earthquake swarm. Geophysical Research Letters 41 (8), 2778–2785. http://dx.doi.org/10.1002/2014 GL059791.
16. Hirose H., Obara K., 2005. Repeating short- and long-term slow slip events with deep tremor activity around the Bungo channel region, southwest Japan. Earth, Planets and Space 57 (10), 961–972.
17. Hirose H., Obara K., 2006. Short-term slow slip and correlated tremor episodes in the Tokai region, central Japan. Geophysical Research Letters 33 (17), L17311. http://dx.doi.org/10.1029/2006GL026579.
18. Hirose H., Obara K., 2010. Recurrence behavior of short-term slow slip and correlated nonvolcanic tremor episodes in western Shikoku, southwest Japan. Journal of Geophysical Research 115 (B6), B00A21. http://dx.doi.org/10.1029/ 2008JB006050.
19. Hsu Y.-J., Simons M., Avouac J.-P., Galetzka J., Sieh K., Chlieh M., Natawidjaja D., Prawirodirdjo L., Bock Y., 2006. Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra. Science 312 (5782), 1921–1926. http://dx.doi. org/10.1126/science.1126960.
20. Hutton W., DeMets C., Sanchez O., Suarez G., Stock J., 2001. Slip kinematics and dynamics during and after the 1995 October 9 Mw=8.0 Colima-Jalisco earthquake, Mexico, from GPS geodetic constraints. Geophysical Journal International 146 (3), 637–658. http://dx.doi.org/10.1046/j.1365-246X.2001.00472.x.
21. Ito Y., Obara K., Matsuzawa T., Maeda T., 2009. Very low frequency earthquakes related to small asperities on the plate boundary interface at the locked to aseismic transition. Journal of Geophysical Research 114 (B11), B00A13. http://dx. doi.org/10.1029/2008JB006036.
22. Jiang Y., Wdowinski S., Dixon T.H., Hackl M., Protti M., Gonzalez V., 2012. Slow slip events in Costa Rica detected by continuous GPS observations, 2002–2011. Geochemistry, Geophysics, Geosystems 13 (4), Q04006. http://dx.doi.org/10. 1029/2012GC004058.
23. Kawasaki I., Asai Y., Tamura Y., 2001. Space–time distribution of interplate moment release including slow earthquakes and the seismo-geodetic coupling in the Sanriku-oki region along the Japan trench. Tectonophysics 330 (3), 267–283. http://dx.doi.org/10.1016/S0040-1951(00)00245-6.
24. Kawasaki I., Asai Y., Tamura Y., Sagiya T., Mikami N., Okada Y., Sakata M., Kasahara M., 1995. The 1992 Sanriku-Oki, Japan, ultra-slow earthquake. Journal of Physics of the Earth 43 (2), 105–116. http://dx.doi.org/10.4294/jpe1952.43.105.
25. Kostoglodov V., Singh S.K., Santiago J.A., Franco S.I., Larson K.M., Lowry A.R., Bilham R., 2003. A large silent earthquake in the Guerrero seismic gap, Mexico. Geophysical Research Letters 30 (15), 1807. http://dx.doi.org/10.1029/2003GL 017219.
26. La Bonte A.L., Brown K.M., Fialko Y., 2009. Hydrologic detection and finite element modeling of a slow slip event in the Costa Rica prism toe. Journal of Geophysical Research 114 (В4), B00A02. http://dx.doi.org/10.1029/2008JB005806.
27. Larson K.M., Lowry A.R., Kostoglodov V., Hutton W., Sánchez O., Hudnut K., Suárez G., 2004. Crustal deformation measurements in Guerrero, Mexico. Journal of Geophysical Research 109 (В4), B04409. http://dx.doi.org/10.1029/2003JB 002843.
28. Linde A.T., Gladwin M.T., Johnston M.J.S., Gwyther R.L., Bilham R.G., 1996. A slow earthquake sequence on the San An-dreas fault. Nature 383 (6595), 65–68. http://dx.doi.org/10.1038/383065a0.
29. Maeda T., Obara K., 2009. Spatiotemporal distribution of seismic energy radiation from low-frequency tremor in western Shikoku, Japan. Journal of Geophysical Research 114 (В10), B00A09. http://dx.doi.org/10.1029/2008JB006043.
30. Matsubara M., Yagi Y., Obara K., 2005. Plate boundary slip associated with the 2003 Off-Tokachi earthquake based on small repeating earthquakes. Geophysical Research Letters 32 (8), L08316. http://dx.doi.org/10.1029/2004GL022310.
31. Melbourne T.I., Webb F.H., Stock J.M., Reigber C., 2002. Rapid postseismic transients in subduction zones from continuous GPS. Journal of Geophysical Research 107 (B10), 2241. http://dx.doi.org/10.1029/2001JB000555.
32. Miyazaki S., McGuire J.J., Segall P., 2003. A transient subduction zone slip episode in southwest Japan observed by the nationwide GPS array. Journal of Geophysical Research 108 (B2), 2087. http://dx.doi.org/10.1029/2001JB000456.
33. Miyazaki S., Segall P., Mc Guire J.J., Kato T., Hatanaka Y., 2006. Spatial and temporal evolution of stress and slip rate during the 2000 Tokai slow earthquake. Journal of Geophysical Research 111 (В3), B03409. http://dx.doi.org/10.1029/ 2004JB003426.
34. Montgomery-Brown E.K., Segall P., Miklius A., 2009. Kilauea slow slip events: Identification, source inversions, and relation to seismicity. Journal of Geophysical Research 114 (В6), B00A03. http://dx.doi.org/10.1029/2008JB006074.
35. Nakagawa Y., Harada S., Kawasaki I., Sagiya T., 2000. A preliminary report on February, 1999, silent earthquake off Boso Peninsula, central Japan, as revealed by GEONET. Abstracts of the Joint Meeting for Earth and Planetary Science, Da-009.
36. Obara K., Hirose H., 2006. Non-volcanic deep lowfrequency tremors accompanying slow slips in the southwest Japan sub-duction zone. Tectonophysics 417 (1–2), 33–51. http://dx.doi.org/10.1016/j.tecto.2005.04.013.
37. Obara K., Hirose H., Yamamizu F., Kasahara K., 2004. Episodic slow slip events accompanied by non-volcanic tremors in southwest Japan subduction zone. Geophysical Research Letters 31 (23), L23602. http://dx.doi.org/10.1029/2004GL 020848.
38. Ohta Y., Freymueller J.T., Hreinsdóttir S., Suito H., 2006. A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone. Earth and Planetary Science Letters 247 (1–2), 108–116. http://dx.doi.org/10. 1016/j.epsl.2006.05.013.
39. Outerbridge K.C., Dixon T.H., Schwartz S.Y., Walter J I., Protti M., Gonzalez V., Biggs J., Thorwart M., Rabbel W., 2010. A tremor and slip event on the Cocos-Caribbean subduction zone as measured by a global positioning system (GPS) and seismic network on the Nicoya Peninsula, Costa Rica. Journal of Geophysical Research 115 (В10), B10408. http://dx.doi.org/10.1029/2009JB006845.
40. Ozawa S., Miyazaki S., Hatanaka Y., Imakiire T., Kaidzu M., Murakami M., 2003. Characteristic silent earthquakes in the eastern part of the Boso Peninsula, central Japan. Geophysical Research Letters 30 (6), 1283. http://dx.doi.org/10.1029/ 2002GL016665.
41. Ozawa S., Suito H., Imakiire T., Murakmi M., 2007. Spatiotemporal evolution of aseismic interplate slip between 1996 and 1998 and between 2002 and 2004, in Bungo channel, southwest Japan. Journal of Geophysical Research 112 (В5), B05409. http://dx.doi.org/10.1029/2006JB004643.
42. Ozawa S., Yarai H., Imakiire T., Tobita M., 2013. Spatial and temporal evolution of the long-term slow slip in the Bungo Channel, Japan. Earth, Planets and Space 65 (2), 67–73. http://dx.doi.org/10.5047/eps.2012.06.009.
43. Radiguet M., Cotton F., Vergnolle M., Campillo M., Walpersdorf A., Cotte N., Kostoglodov V., 2012. Slow slip events and strain accumulation in the Guerrero gap, Mexico. Journal of Geophysical Research 117 (В4), B04305. http://dx.doi.org/ 10.1029/2011JB008801.
44. Sagiya T., 2004. Interplate Coupling in the Kanto District, Central Japan, and the Boso Peninsula Silent Earthquake in May 1996. Pure and Applied Geophysics 161 (11–12), 2327–2342. http://dx.doi.org/10.1007/s00024-004-2566-6.
45. Sato T., Imanishi K., Kato N., Sagiya T., 2004. Detection of a slow slip event from small signal in GPS data. Geophysical Research Letters 31 (5), L05606, http://dx.doi.org/10.1029/2004GL019514.
46. Schmidt D., 2006. The 2005 Cascadia ETS event inferred from PBO tensor strainmeters and GPS. Eos, Transactions, Ameri-can Geophysical Union 87 (52), Fall Meeting Supplies, Abstract T41A–1545.
47. Schmidt D.A., Gao H., 2010. Source parameters and time‐dependent slip distributions of slow slip events on the Cascadia subduction zone from 1998 to 2008. Journal of Geophysical Research 115 (В4), B00A18. http://dx.doi.org/10.1029/2008 JB006045.
48. Segall P., Desmarais E.K., Shelly D., Miklius A., Cervelli P., 2006. Earthquakes triggered by silent slip events on Kilauea volcano, Hawaii. Nature 442 (7098), 71–74. http://dx.doi.org/10.1038/nature04938.
49. Shelly D.R., Beroza G.C., Ide S., 2007. Complex evolution of transient slip derived from precise tremor locations in western Shikoku, Japan. Geochemistry, Geophysics, Geosystems 8 (10), Q10014. http://dx.doi.org/10.1029/2007GC001640.
50. Subarya C., Chlieh M., Prawirodirdjo L., Avouac J.-P., Bock Y., Sieh K., Meltzner A.J., Natawidjaja D.H., McCaffrey R., 2006. Plate-boundary deformation associated with the great Sumatra-Andaman earthquake. Nature 440 (7080), 46–51. http://dx.doi.org/10.1038/nature04522.
51. Szeliga W., Melbourne T., Miller M., Santillian V., 2004. Southern Cascadia episodic slow earthquakes. Geophysical Research Letters 31 (16), L16602. http://dx.doi.org/10.1029/2004GL020824.
52. Ueda H., Ohtake M., Sato H., 2001. Afterslip of the plate interface following the 1978 Miyagi–Oki, Japan, earthquake, as revealed from geodetic measurement data. Tectonophysics 338 (1), 45–57. http://dx.doi.org/10.1016/S0040-1951(01) 00121-4.
53. Wallace L.M., Barnes P., Beavan J., Van Dissen R., Litchfield N., Mountjoy J., Langridge R., Lamarche G., Pondard N., 2012. The kinematics of a transition from subduction to strike-slip: An example from the central New Zealand plate boundary. Journal of Geophysical Research 117 (B2), B02405. http://dx.doi.org/10.1029/2011JB008640.
54. Wallace L.M., Beavan J., 2006. A large slow slip event on the central Hikurangi subduction interface beneath the Manawatu region, North Island, New Zealand. Geophysical Research Letters 33 (11), L11301. http://dx.doi.org/10.1029/2006 GL026009.
55. Wallace L.M., Beavan J., 2010. Diverse slow slip behavior at the Hikurangi subduction margin, New Zealand. Journal of Geophysical Research 115 (B12), B12402. http://dx.doi.org/10.1029/2010JB007717.
56. Wei M., McGuire J.J., Richardson E., 2012. A slow slip event in the south central Alaska subduction zone and related seismicity anomaly. Geophysical Research Letters 39 (15), L15309. http://dx.doi.org/10.1029/2012GL052351.
Review
For citations:
Kocharyan G.G., Kishkina S.B., Novikov V.A., Ostapchuk A.A. SLOW SLIP EVENTS: PARAMETERS, CONDITIONS OF OCCURRENCE, AND FUTURE RESEARCH PROSPECTS. Geodynamics & Tectonophysics. 2014;5(4):863-891. (In Russ.) https://doi.org/10.5800/GT-2014-5-4-0160