COSEISMIC SLIP DISTRIBUTION OF THE 2020 Mw 6.8 BENGKULU EARTHQUAKE DERIVED FROM THE GNSS OBSERVATIONS
https://doi.org/10.5800/GT-2025-16-4-0839
EDN: WMQWMI
Abstract
On August 18, 2020, an MW 6.8 earthquake occurred ~130 km southwest of Bengkulu. In this study, we used the static GNSS data from continuously monitoring stations, surrounding the epicentre, to obtain the data from 10 days before to 10 days after the earthquake. We estimate the coseismic slip distribution with two models of nodal planes from the USGS. The coseismic slip was calculated using an elastic half-space model with inversion best-fit displacement. The GNSS displacement data with values less than ~5 mm indicate an insignificant displacement and the best model arameters of strike of 313° and dip of 8°, with a misfit value of ~0.4 mm. This study suggests that the 2020 Bengkulu earthquake occurred due to the subduction of the Indo-Australian plate underneath the Eurasian plate with a cumulative seismic moment of 1.73·1019 N·m, equivalent to magnitude 6.76.
About the Authors
O. AnggaraIndonesia
South Lampung 35365
I. Meilano
Indonesia
Bandung 40132
S.M. Alif
Indonesia
South Lampung 35365
S. Susilo
Indonesia
Bogor
References
1. Alif S.M., Anggara O., Jihad M.F., Perdana R.S., 2024. GNSS Velocity and Strain Field in the Northern Sumatra 15 Years After the 2004 M9.2 Sumatra Andaman Earthquake. Geodynamics & Tectonophysics 15 (6), 0798. https://doi.org/10.5800/GT-2024-15-6-0798.
2. Alif S.M., Erlando M.R., Anggara O., Nurhayati M., 2025. Impact of Baseline Length on Uncertainty in Static Relative GNSS Positioning. Journal of Applied Geodesy. https://doi.org/10.1515/jag-2024-0090.
3. Alif S.M., Fattah E.I., Kholil M., Anggara O., 2021. Source of the 2019 Mw 6.9 Banten Intraslab Earthquake Modelled with GPS Data Inversion. Geodesy and Geodynamics 12 (4), 308–314. https://doi.org/10.1016/j.geog.2021.06.001.
4. Altamimi Z., Rebischung P., Métivier L., Collilieux X., 2016. ITRF2014: A New Release of the International Terrestrial Reference Frame Modeling Nonlinear Station Motions. Journal of Geophysical Research: Solid Earth 121 (8), 6109–6131. https://doi.org/10.1002/2016JB013098.
5. Anggara O., Welly T.K., Fauzi A.I., Alif S.M., Perdana R.S., Oktarina S.W., Nuha M.U., Rosadi U., 2023. Monitoring Ground Deformation of Sinabung Volcano Eruption 2018–2019 Using DInSAR Technique and GPS Data. AIP Conference Proceedings 2654 (1), 050012. https://doi.org/10.1063/5.0114428.
6. Ansari K., Walo J., Simanjuntak A.V.H., Wezka K., 2024. Crustal Deformation from GNSS Measurement and Earthquake Mechanism Along Pieniny Klippen Belt, Southern Poland. Arabian Journal of Geosciences 17, 180. https://doi.org/10.1007/s12517-024-11983-8.
7. Bock Y., Prawirodirdjo L., Genrich J., Stevens C., Mccaffrey R., Subarya C., Puntodewo S., Calais E., 2003. Crustal Motion in Indonesia from Global Positioning System Measurements. Journal of Geophysical Research: Solid Earth 108 (В6), 2367. https://doi.org/10.1029/2001JB000324.
8. Chlieh M., Avouac J.P., Sieh K., Natawidjaja D.H., Galetzka J., 2008. Heterogeneous Coupling of the Sumatran Megathrust Constrained by Geodetic and Paleogeodetic Measurements. Journal of Geophysical Research: Solid Earth 113 (В5), B05305. https://doi.org/10.1029/2007JB004981.
9. Dach R., Lutz S., Walser P., Fridez P. (Eds), 2015. Bernese GNSS Software. Version 5.2. University of Bern, 862 p. DOI:10.7892/boris.72297.
10. Dziewonski A.M., Chou T.-A., Woodhouse J.H., 1981. Determination of Earthquake Source Parameters from Waveform Data for Studies of Global and Regional Seismicity. Journal of Geophysical Research: Solid Earth 86 (В4), 2825. https://doi.org/10.1029/JB086iB04p02825.
11. Gunawan E., Kholil M., Widiyantoro S., 2022. Coseismic Slip Distribution of the 14 January 2021 Mamuju-Majene, Sulawesi, Earthquake Derived from GPS Data. Natural Hazards 111, 939–948. https://doi.org/10.1007/s11069-021-05084-y.
12. Gusman A.R., Tanioka Y., Kobayashi T., Latief H., Pandoe W., 2010. Slip Distribution of the 2007 Bengkulu Earthquake Inferred from Tsunami Waveforms and InSAR Data. Journal of Geophysical Research: Solid Earth 115 (В12), B12316. https://doi.org/10.1029/2010JB007565.
13. Hayes G.P., Wald D.J., Johnson R.L., 2012. Slab1.0: A Three-Dimensional Model of Global Subduction Zone Geometries. Journal of Geophysical Research: Solid Earth 117 (B1), B01302. https://doi.org/10.1029/2011JB008524.
14. Heliani L.S., Pratama C., Wibowo A., Sahara D.P., Susilo S., Wibowo S.T., Safii A.N., Prayoga O. et al., 2024. Strain Accumulation in the Mentawai Forearc Sliver, Indonesia, Inferred from Continuous GNSS-Derived Strain Rate. Geodesy and Geodynamics 16 (1), 1–6. https://doi.org/10.1016/j.geog.2024.04.003.
15. Hill E.M., Borrero J.C., Huang Z., Qiu Q., Banerjee P., Natawidjaja D.H., Elosegui P., Fritz H.M. et al., 2012. The 2010 MW 7.8 Mentawai Earthquake: Very Shallow Source of a Rare Tsunami Earthquake Determined from Tsunami Field Survey and Near-Field GPS Data. Journal of Geophysical Research: Solid Earth 117 (В6), B06402. https://doi.org/10.1029/2012JB009159.
16. Irsyam M., Widiyantoro S., Natawidjaja D.H., Meilano I., Rudyanto A., Hidayati S., Triyoso W., Hanifa N.R., Djarwadi D., Faizal L., Sunarjito (Eds), 2017. Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017. Bandung, 376 p.
17. Ishibe T., Ogata Y., Tsuruoka H., Satake K., 2017. Testing the Coulomb Stress Triggering Hypothesis for Three Recent Megathrust Earthquakes. Geoscience Letters 4, 5. https://doi.org/10.1186/s40562-017-0070-y.
18. King G.C.P., Stein R.S., Lin J., 1994. Static Stress Changes and the Triggering of Earthquakes. Bulletin of the Seismological Society of America 84 (3), 935–953. DOI:10.1785/BSSA0840030935.
19. Konca A.O., Avouac J.P., Sladen A., Meltzner A.J., Sieh K., Fang P., Li Z., Galetzka J. et al., 2008. Partial Rupture of a Locked Patch of the Sumatra Megathrust During the 2007 Earthquake Sequence. Nature 456, 631–635. https://doi.org/10.1038/nature07572.
20. Li L., Huang Z., 2013. Slip Distribution of the 2010 Mentawai Earthquake from Inversion of Tsunami Waveforms and Tsunami Field Survey Data. In: Proceedings of the 7th International Conference on Asian and Pacific Coasts (September 24–26, 2013). Bali, Indonesia, p. 758–763.
21. Lubis A.M., Hashima A., Sato T., 2013. Analysis of Afterslip Distribution Following the 2007 September 12 Southern Sumatra Earthquake Using Poroelastic and Viscoelastic Media. Geophysical Journal International 192 (1), 18–37. https://doi.org/10.1093/gji/ggs020.
22. Lukhnev A.V., Lukhneva O.F., Sankov V.A., Miroshnichenko A.I., 2022. Coseismic Effects of the 11 January 2021 Hovsgol, Mongolia, Earthquake. Geodynamics & Tectonophysics 13 (2), 0626 (in Russian) https://doi.org/10.5800/GT-2022-13-2s-0626.
23. Natawidjaja D.H., Sieh K., Chlieh M., Galetzka J., Suwargadi B.W., Cheng H., Edwards R.L., Avouac J.-Ph., Ward S.N., 2006. Source Parameters of the Great Sumatran Megathrust Earthquakes of 1797 and 1833 Inferred from Coral Microatolls. Journal of Geophysical Research: Solid Earth 111 (В6), B06403. https://doi.org/10.1029/2005JB004025.
24. Newcomb K., McCann W., 1987. Seismic History and Seismotectonics of the Sunda Arc. Journal of Geophysical Research: Solid Earth 92 (B1), 421–439. https://doi.org/10.1029/JB092iB01p00421.
25. Okada Y., 1992. Internal Deformation Due to Shear and Tensile Faults in a Half-Space. Bulletin of the Seismological Society of America 82 (2), 1018–1040. https://doi.org/10.1785/BSSA0820021018.
26. Okada Y., Nishimura T., 2025. Investigation on Short-Term Slow Slip Events in the Northeast Japan Subduction Zones Using Decadal GNSS Data. Earth, Planets and Space 77, 45. https://doi.org/10.1186/s40623-025-02175-z.
27. Prawirodirdjo L., McCaffrey R., Chadwell C.D., Bock Y., Subarya C., 2010. Geodetic Observations of an Earthquake Cycle at the Sumatra Subduction Zone: Role of Interseismic Strain Segmentation. Journal of Geophysical Research: Solid Earth 115 (В3), B03414. https://doi.org/10.1029/2008JB006139.
28. Stamps D.S., Flesch L.M., Calais E., Ghosh A., 2014. Current Kinematics and Dynamics of Africa and the East African Rift System. Journal of Geophysical Research: Solid Earth 119 (6), 5161–5186. https://doi.org/10.1002/2013JB010717.
29. Tanaka Yu., Ohta Yu., Miyazaki Sh., 2019. Real-Time Coseismic Slip Estimation via the GNSS Carrier Phase to Fault Slip Approach: A Case Study of the 2016 Kumamoto Earthquake. Geophysical Research Letters 46 (3), 1367–1374. https://doi.org/10.1029/2018GL080741.
30. Tin T.Z.H., Nishimura T., Hashimoto M., Lindsey E.O., Aung L.T., Min S.M., Thant M., 2022. Present-Day Crustal Deformation and Slip Rate Along the Southern Sagaing Fault in Myanmar by GNSS Observation. Journal of Asian Earth Sciences 228, 105125. https://doi.org/10.1016/j.jseaes.2022.105125.
31. Toda S., Stein R.S., Sevilgen V., Lin J., 2011. Coulomb 3.3. Graphic-Rich Deformation and Stress-Change Software for Earthquake, Tectonic, and Volcano Research and Teaching. User Guide. USGS Open-File Report 2011–1060. 63 p.
32. Tozer B., Sandwell D.T., Smith W.H.F., Olson C., Beale J.R., Wessel P., 2019. Global Bathymetry and Topography at 15 Arc Sec: SRTM15+. Earth and Space Science 6 (10), 1847–1864. https://doi.org/10.1029/2019EA000658.
33. Tsang L.L.H., Hill E.M., Barbot S., Qiu Q., Feng L., Hermawan I., Banerjee P., Natawidjaja D.H., 2016. Afterslip Following the 2007 Mw 8.4 Bengkulu Earthquake in Sumatra Loaded the 2010 Mw 7.8 Mentawai Tsunami Earthquake Rupture Zone. Journal of Geophysical Research: Solid Earth 121 (12), 9034–9049. https://doi.org/10.1002/2016JB013432.
34. Wang L., Wang R., Roth F., Enescu B., Hainzl S., Ergintav S., 2009. Afterslip and Viscoelastic Relaxation Following the 1999 M 7.4 İzmit Earthquake from GPS Measurements. Geophysical Journal International 178 (3), 1220–1237. https://doi.org/10.1111/j.1365-246X.2009.04228.x.
35. Wang R., Diao F., Hoechner A., 2013. SDM-A Geodetic Inversion Code Incorporating with Layered Crust Structure and Curved Fault Geometry. In: Geophysical Research Abstracts of the General Assembly Conference (7–12 April, 2013, Vienna, Austria). Vol. 15. EGU2013-2411.
36. Wessel P., Smith W.H.F., Scharroo R., Luis J., Wobbe F., 2013. Generic Mapping Tools: Improved Version Released. Eos 94 (45), 409–410. https://doi.org/10.1002/2013EO450001.
37. Xiang Yu., Yue J., Wang H., Chen Yu., 2024. GNSS Imaging Coseismic and Postseismic Slip Associated with the 2021 M 8.2 Chignik, Alaska Earthquake. Tectonophysics 876, 230273. https://doi.org/10.1016/j.tecto.2024.230273.
38. Xu X., Sandwell D.T., Klein E., Bock Y., 2021. Integrated Sentinel-1 InSAR and GNSS Time-Series Along the San Andreas Fault System. Journal of Geophysical Research: Solid Earth 126 (11), e2021JB022579. https://doi.org/10.1029/2021JB022579.
39. Zhang H., Chen J., Ge Z., 2012. Multi-Fault Rupture and Successive Triggering During the 2012 Mw 8.6 Sumatra Offshore Earthquake. Geophysical Research Letters 39 (22), L22305. https://doi.org/10.1029/2012GL053805.
40. Zheng Z., Jin Sh., Fan L., 2018. Co-Seismic Deformation Following the 2007 Bengkulu Earthquake Constrained by GRACE and GPS Observations. Physics of the Earth and Planetary Interiors 280, 20–31. https://doi.org/10.1016/j.pepi.2018.04.009.
Review
For citations:
Anggara O., Meilano I., Alif S., Susilo S. COSEISMIC SLIP DISTRIBUTION OF THE 2020 Mw 6.8 BENGKULU EARTHQUAKE DERIVED FROM THE GNSS OBSERVATIONS. Geodynamics & Tectonophysics. 2025;16(4):0839. https://doi.org/10.5800/GT-2025-16-4-0839. EDN: WMQWMI