Preview

Geodynamics & Tectonophysics

Advanced search

ON THE RELATIONSHIP BETWEEN THE CHANGES IN THE TOTAL ELECTRON CONTENT OF THE IONOSPHERE BEFORE STRONG KAMCHATKA EARTHQUAKES AND THOSE IN THE SPECIFIC ELECTRICAL RESISTIVITY OF THE GEOMEDIUM

https://doi.org/10.5800/GT-2025-16-4-0837

EDN: FOLQDJ

Abstract

The article assesses the possibility of influence of changes in the electrical resistivity of the upper horizons of the Earth’s crust on the formation of large-scale anomalies of the ionospheric total electron content (TEC), recorded before strong earthquakes in various seismically active regions of the world. The results of monitoring the ionospheric TEC at the final preparatory stages of the Zhupanov (January 30, 2016, Mw=7.2) and Shipunsky (August 17, 2024, Mw=7.0) earthquakes were compared with changes in the electrical resistivity of the geomedium in the Petropavlovsk-Kamchatsky geodynamic polygon. The presented results allow us to conclude that the changes in the ionospheric TEC at the final preparatory stages of these earthquakes are significantly correlated with the changes in the electrical resistivity of the upper (up to approximately 1000 m) part of the Earth’s crust in the corresponding subionospheric regions. The paper discusses a possible physical basis for the obtained results.

About the Authors

V. A. Gavrilov
Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

9 Piip Blvd, Petropavlovsk-Kamchatsky 683006



E. V. Poltavtseva
Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

9 Piip Blvd, Petropavlovsk-Kamchatsky 683006



I. A. Sagaryarov
Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

9 Piip Blvd, Petropavlovsk-Kamchatsky 683006



Yu. Yu. Buss
Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

9 Piip Blvd, Petropavlovsk-Kamchatsky 683006



References

1. Afraimovich E.L., Perevalova N.P., 2006. GPS-Monitoring of the Earth’s Upper Atmosphere. Irkutsk, 479 p. (in Russian)

2. Bogdanov V., Gavrilov V., Pulinets S., Ouzounov D., 2020. Responses to the Preparation of Strong Kamchatka Earthquakes in the Lithosphere-Atmosphere-Ionosphere System, Based on New Data from Integrated Ground and Ionospheric Monitoring. E3S Web of Conferences 196, 03005. https://doi.org/10.1051/e3sconf/202019603005.

3. Dobrovolsky I.P., 2009. The Mathematical Theory of Generation and Prediction of a Tectonic Earthquake. Fizmatlit, Moscow, 240 p. (in Russian)

4. Fujinawa Y., Kumagai T., Takahashi K., 1992. A Study of Anomalous Underground Electric Field Variations Associated with a Volcanic Eruption. Geophysical Research Letters 19 (1), 9–12. https://doi.org/10.1029/91GL02822.

5. Gavrilov V.A., 2013. Method for Continuous Monitoring of Electrical Rock Resistivity. Seismic Instruments 43 (3), 25–38 (in Russian)

6. Gavrilov V.A., 2017. Influence of Alternating Electromagnetic Fields on the Geoacoustic Processes: Empirical Regularities and Physical Mechanisms. PhD Thesis (Doctor of Physical and Mathematical Sciences). Moscow, 385 p. (in Russian)

7. Gavrilov V.A., Deshcherevskii A.V., Vlasov Yu.A., Buss Yu.Yu., Morozova Yu.V., Poltavtseva E.V., Fedoristov O.V., Denisenko V.P., 2021. Network of Multidisciplinary Borehole Measurements at the Petropavlovsk-Kamchatsky Geodynamic Polygon. Seismic Instruments 57 (3), 52–78 (in Russian) DOI:10.21455/si2021.3-5.

8. Gavrilov V.A., Morozova Yu.V., Deshcherevskii A.V., Buss Yu.Yu., Panteleev I.A., 2019. Reflection of the Preparation of the Zhupanov Strong Near-Field Event in the Data of the Complex Borehole Measurements at the Petropavlovsk-Kamchatsky Geodynamic Polygon. In: Trigger Effects in Geosystems. Abstracts of the 5th International Conference (June 4–7, 2019, Moscow). Institute of Geosphere Dynamics RAS, Moscow, p. 38–44 (in Russian)

9. Gavrilov V.A., Panteleev I.A., Deshcherevskii A.V., Lander A.V., Morozova Yu.V., Buss Yu.Yu., Vlasov Yu.A., 2020. Stress-Strain State Monitoring of the Geological Medium Based on the Multi-Instrumental Measurements in Boreholes: Experience of Research at the Petropavlovsk-Kamchatskii Geodynamic Testing Site (Kamchatka, Russia). Pure and Applied Geophysics 177, 397–419. https://doi.org/10.1007/s00024-019-02311-3.

10. Harrison R.G., Aplin K.L., Rycroft M.J., 2010. Atmospheric Electricity Coupling Between Earthquake Regions and the Ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics 72 (5–6), 376–381. https://doi.org/10.1016/j.jastp.2009.12.004.

11. He L., Heki K., 2017. Ionospheric Anomalies Immediately Before MW7.0–8.0 Earthquakes. Journal of Geophysical Research: Space Physics 122 (8), 8659–8678. https://doi.org/10.1002/2017JA024012.

12. Heki K., 2011. Ionospheric Electron Enhancement Preceding the 2011 Tohoku-Oki Earthquake. Geophysical Research Letters 38 (17), L17312. https://doi.org/10.1029/2011GL047908.

13. Hofmann-Wellenhof B., 1992. Global Positioning System. Theory and Practice. Springer-Verlag, Wien, 326 p. https://doi.org/10.1007/978-3-7091-5126-6.

14. King R.W.P., Smith G.S., Owens M., Wu T.T., 1981. Antennas in Matters: Fundamentals, Theory and Applications. MIT Press, Cambridge, 868 p.

15. Kissin I.G., 2015. Fluids in the Earth’s Crust: Geophysical and Tectonical Aspects. Nauka, Moscow, 327 p. (in Russian)

16. Klobuchar J.A., 1986. Design and Characteristics of the GPS Ionospheric Time Delay Algorithm for Single Frequency Users. In: PLANS’86. Position Location and Navigation Symposium (November 4–7, 1986, Las Vegas, Nevada, USA). P. 280–286.

17. Liu J.Y., Chen Y.I., Chuo Y.J., Chen C.S., 2006. A Statistical Investigation of Preearthquake Ionospheric Anomaly. Journal of Geophysical Research 111 (A5), A05304. https://doi.org/10.1029/2005JA011333.

18. Mikhailov Yu.M., Mikhailova G.A., Kapustina O.V., Depueva A.Kh., Buzevich A.V., Druzhin G.I., Smirnov S.E., Firstov P.P., 2002. Variations in Different Atmospheric and Ionospheric Parameters in the Earthquake Preparation Periods at Kamchatka: The Preliminary Results. Geomagnetism and Aeronomy 42 (6), 769–776.

19. Mylnikova A.A., Yasyukevich Yu.V., Demyanov V.V., 2013. Estimation of Absolute Vertical Total Electron Content in the Ionosphere from GLONASS/GPS Data. Solar-Terrestrial Physics 24, 70–77 (in Russian)

20. Parkhomenko E.I., 1965. Electrical Properties of the Rocks. Nauka, Moscow, 164 p. (in Russian)

21. Pulinets S., Boyarchuk K., 2004. Ionospheric Precursors of Earthquakes. Springer, Berlin, 315 p. https://doi.org/10.1007/b137616.

22. Pulinets S., Davidenko D., 2014. Ionospheric Precursors of Earthquakes and Global Electric Circuit. Advances in Space Research 53 (1), 709–723. https://doi.org/10.1016/j.asr.2013.12.035.

23. Pulinets S.A., Alekseev V.A., Boyarchuk K.A., Hegai V.V., Depuev V.Kh., 1999. Radon and Ionosphere Monitoring as a Means for Strong Earthquakes Forecast. Il Nuovo Cimento 22C, 621–626.

24. Riznichenko Yu.V., 1976. Source Dimensions of the Crustal Earthquake and Seismic Moment. In: Research in Earthquake Physics. Nauka, Moscow, p. 9–27 (in Russian)

25. Sharma G., 2022. Manifestation of Earthquake Preparation Zone in the Ionosphere Before 2021 Sonitpur, Assam Earthquake Revealed by GPS-TEC Data. Geodesy and Geodynamics 13 (3), 230–237. https://doi.org/10.1016/j.geog.2021.09.010.

26. Sidorin A.Ya., 1992. Earthquake Precursors. Nauka, Moscow, 190 p. (in Russian)

27. Slyunyaev N., Kalinin A., Mareev E., Zhidkov A., 2014. Calculation of the Ionospheric Potential in Steady-State and Non-Steady-State Models of the Global Electric Circuit. In: Proceedings of XV International Conference on Atmospheric Electricity (June 15–20, 2014, Norman, U.S.A.). P. 1–14.

28. Sobolev G.A., Ponomarev A.V., 2003. Earthquake Physics and Precursors. Nauka, Moscow, 270 p. (in Russian)

29. Surkov V.V., 2024. Air Current Circulation as a Possible Cause of Preseismic Anomalies in the Surface Electric Field. Physics of the Earth 2, 42–58 (in Russian) https://doi.org/10.31857/S0002333724020046.

30. Tsai Y.-B., Liu J.-Y., Ma K.-F., Yen H.-Y., Chen K.-S., Chen Y.-I., Lee C.-P., 2006. Precursory Phenomena Associated with the Chi-Chi Earthquake in Taiwan as Identified Under the ISTEP Program. Physics and Chemistry of the Earth 31 (4–9), 365–377. https://doi.org/10.1016/j.pce.2006.02.035.

31. Tsugawa T., Saito A., Otsuka Y., Nishioka M., Maruyama T., Kato H., Nagatsuma T., Murata K.T., 2011. Ionospheric Disturbances Detected by GPS Total Electron Content Observation After the 2011 off the Pacific Coast of Tohoku Earthquake. Earth, Planets and Space 63, 66. https://doi.org/10.5047/eps.2011.06.035.


Review

For citations:


Gavrilov V.A., Poltavtseva E.V., Sagaryarov I.A., Buss Yu.Yu. ON THE RELATIONSHIP BETWEEN THE CHANGES IN THE TOTAL ELECTRON CONTENT OF THE IONOSPHERE BEFORE STRONG KAMCHATKA EARTHQUAKES AND THOSE IN THE SPECIFIC ELECTRICAL RESISTIVITY OF THE GEOMEDIUM. Geodynamics & Tectonophysics. 2025;16(4):0837. (In Russ.) https://doi.org/10.5800/GT-2025-16-4-0837. EDN: FOLQDJ

Views: 21


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)