Preview

Geodynamics & Tectonophysics

Advanced search

DISTRIBUTION OF REDUCED SEISMIC ENERGY AND STRESS DROP IN THE ALTAI-SAYAN SEISMOACTIVE REGION

https://doi.org/10.5800/GT-2025-16-4-0835

EDN: HWNUFQ

Abstract

The data bank has been created to address the tensor of the seismic moment of earthquakes that occurred in the Altai-Sayan seismically active region in the period 1978–2025. The scalar seismic moment M0 for these events was already known from the CMT catalog. This paper presents estimates of the following dynamic parameters: source radius r, shear stress drop ∆σ, and reduced seismic energy ePR using a phenomenological approach based on previously obtained regression relationships between the source radius r and the scalar seismic moment M0. Stress drop and reduced seismic energy estimates have been obtained for 69 earthquakes with a magnitude MW 3.5–7.2. Thus, it allows to significantly expand the data bank on these earthquake parameters for the Altai-Sayan seismically active region. Maps have been drawn of the areally averaged estimates of stress drop and reduced seismic energy.

About the Authors

N. A. Sycheva
Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
Russian Federation

10-1 Bolshaya Gruzinskaya St, Moscow 123242



L. M. Bogomolov
Institute of Marine Geology and Geophysics, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

1B Nauki St, Yuzhno-Sakhalinsk 693022



References

1. Abdrakhmatov K.Ye., Aldazhanov S.A., Hager B.H., Hamburger M.W., Herring T.A., Kalabaev K.B., Makarov V.I., Molnar P. et al., 1996. Relatively Recent Construction of the Tien Shan Inferred from GPS Measurements of Present-Day Crustal Deformation Rates. Nature 384, 450–453. https://doi.org/10.1038/384450a0.

2. Aivazian S.A., 2001. Applied Statistics. Essentials of Econometrics. Vol. 2. Essentials of Econometrics. Textbook. Unity-Dana, Moscow, 432 p. (in Russian)

3. Aivazian S.A., Mkhitarian V.S., 2001. Applied Statistics. Essentials of Econometrics. Vol. 1. Theory and Applied Statistics. Textbook. Unity-Dana, Moscow, 656 p. (in Russian)

4. Aptekman Zh.Ya., Belavina Yu.F., Zakharova A.I., Zobin V.M., Kogan S.Ya., Korchagina O.A., Moskvina A.G., Polikarpova L.A., Chepkunas L.S., 1989. P-wave Spectra in the Context of Determining the Dynamic Source Parameters of Earthquakes. Station to Source Spectrum Transition and Calculation of Dynamic Source Parameters. Journal of Volcanology and Seismology 2, 66–79 (in Russian)

5. Bachmanov D.M., Kozhurin A.I., Trifonov V.G., 2017. The Active Faults of Eurasia Database. Geodynamics & Tectonophysics 8 (4), 711–736 (in Russian) https://doi.org/10.5800/GT-2017-8-4-0314.

6. Boore D., 2003. Simulation of Ground Motion Using the Stochastic Method. Pure and Applied Geophysics 160 (3–4), 635–676. https://doi.org/10.1007/PL00012553.

7. Bormann P., Liu R., Xu Z., Ren K., Zhang L., Wendt S., 2009. First Application of the New IASPEI Teleseismic Magnitude Standards to Data of the China National Seismographic Network. Bulletin of the Seismological Society of America 99 (3), 1868–1891. https://doi.org/10.1785/0120080010.

8. Brune J.N., 1970. Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes. Journal of Geophysical Research 75 (26), 4997–5009. https://doi.org/10.1029/JB075i026p04997.

9. Brune J.N., 1971. Correction [to "Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes"]. Journal of Geophysical Research 76 (20), 5002. https://doi.org/10.1029/JB076i020p05002.

10. Chepkunas L.S., Malyanova L.S., 2017. Source Parameters of Strong Earthquakes. Earthquakes of the Northern Eurasia. Iss. 20 (2011). GS RAS, Obninsk, p. 277–281 (in Russian)

11. Chepkunas L.S., Malyanova L.S., 2018. Source Parameters of Strong Earthquakes. Earthquakes of the Northern Eurasia. Iss. 21 (2012). GS RAS, Obninsk, p. 280–285 (in Russian)

12. Chinnery V.A., 1961. The Deformation of the Ground Around Surface Faults. Bulletin of the Seismological Society of America 51 (3), 355–3725. https://doi.org/10.1785/BSSA0510030355.

13. Chinnery V.A., 1969. Earthquake Magnitude and Source Parameters. Bulletin of the Seismological Society of America 59 (5), 1969–1982. https://doi.org/10.1785/BSSA0590051969.

14. Dobrynina A.A., 2009. Source Parameters of the Earthquakes of the Baikal Rift System. Izvestiya, Physics of the Solid Earth 45 (12), 1093–1109. https://doi.org/10.1134/S1069351309120064.

15. Emanov A.F., Emanov A.A., Chechel’nitskii V.V., Shevkunova E.V., Radziminovich Ya.B., Fateev A.V., Kobeleva E.A., Gladyshev E.A., Arapov V.V., Artemova A.I., Podkorytova V.G., 2022. The Khuvsgul Earthquake of January 12, 2021 (MW=6.7, ML=6.9) and Early Aftershocks. Izvestiya, Physics of the Solid Earth 58, 59–73. https://doi.org/10.1134/S1069351322010025.

16. Emanov A.F., Emanov A.A., Chechelnitsky V.V., Shevkunova E.V., Kobeleva E.A., Fateev A.V., 2023. The Block Structure and the Strongest Earthquakes of the Junction Area Between the Altai-Sayan Mountain Region and the Baikal Rift Zone. In: Problems of Complex Geophysical Monitoring of Seismoactive Regions. Proceedings of the 9th Scientific-Technical Conference with an International Participation (September 24–30, 2023). Kamchatka Branch of the GS RAS, Petropavlovsk-Kamchatsky, p. 139–142 (in Russian)

17. Emanov A.F., Emanov A.A., Fateev A.V., Soloviev V.M., Shevkunova E.V., Gladyshev E.A., Antonov I.A., Korabelshchikov D.G. et al., 2021. Seismological Studies in the Altai-Sayan Mountain Region. Russian Journal of Seismology 3 (2), 20–51 (in Russian) https://doi.org/10.35540/2686-7907.2021.2.02.

18. Emanov A.F., Emanov A.A., Leskova E.V., 2010. Seismic Activation in the Busingol-Belinsky Fault Zone. Physical Mesomechanics 13 (S1), 72–77 (in Russian)

19. Emanov A.F., Emanov A.A., Leskova E.V., Seleznev V.S., Fateev A.V., 2014a. The Tuva Earthquakes of December 27, 2011, ML=6.7, and February 26, 2012, ML=6.8, and Their Aftershocks. Doklady Earth Sciences 456 (1), 594–597. https://doi.org/10.1134/S1028334X14050249.

20. Emanov A.F., Leskova E.V., Emanov A.A., Radziminovich Ya.B., Gileva N.A., Artemova A.I., 2014b. The August 16, 2008, Belin-Bii-Khem Earthquake with КР=15, МW=5.7, I0=7 (the Tuva Republic). Earthquakes of the Northern Eurasia. Iss. 17 (2008). GS RAS, Obninsk, p. 378–385 (in Russian)

21. Kanamori H., 1977. The Energy Release in Great Earthquakes. Journal of Geophysical Research 82 (20), 2981–2987. https://doi.org/10.1029/JB082i020p02981.

22. Kaneko Y., Shearer P.M., 2014. Seismic Source Spectra and Estimated Stress Drop Derived from Cohesive-Zone Models of Circular Subshear Rupture. Geophysical Journal International 197 (2), 1002–1015. https://doi.org/10.1093/gji/ggu030.

23. Kim W.-Y., Wahlström R., Uski M., 1989. Regional Spectral Scaling Relations of Source Parameters for Earthquakes in the Baltic Shield. Tectonophysics 166 (1–3), 151–161. https://doi.org/10.1016/0040-1951(89)90210-2.

24. Kocharyan G.G., 2012. On Radiation Efficiency of Earthquakes (an Example of Geomechanical Interpretation of the Results of Seismological Observations). Dynamic Processes in Geospheres 3, 36–47 (in Russian)

25. Kocharyan G.G., 2014. Scale Effect in Seismotectonics. Geodynamics & Tectonophysics 5 (2), 353–385 (in Russian) https://doi.org/10.5800/GT-2014-5-2-0133.

26. Kocharyan G.G., 2016. Geomechanics of Faults. GEOS, Moscow, 424 p. (in Russian)

27. Kostrov B.V., 1975. Mechanics of Tectonic Earthquake Source. Nauka, Moscow, 176 p. (in Russian)

28. Kuchai O.A., 2012. Specific Features of Fields of Stresses Associated with Aftershock Processes in the Altai-Sayan Mountainous Region. Geodynamics & Tectonophysics 3 (1), 59–68 (in Russian) https://doi.org/10.5800/GT-2012-3-1-0062.

29. Larson K.M., Bürgmann R., Bilham R., Freymueller J.T., 1999. Kinematics of the India-Eurasia Collision Zone from GPS Measurements. Journal of Geophysical Research: Solid Earth 104 (B1), 1077–1093. https://doi.org/10.1029/1998JB900043.

30. Logachev N.A. (Ed.), 1993. Seismotectonics and Seismicity of Lake Khövsgöl Region. Nauka, Novosibirsk, 184 p. (in Russian)

31. Lukk A.A., Yunga S.L., 1979. Seismotectonic Deformation of the Garm Region. Bulletin of the USSR Academy of Sciences. Physics of the Earth 10, 24–43 (in Russian)

32. Madariaga R., 2011. Earthquake Scaling Laws. In: R. Meyers (Ed.), Extreme Environmental Events: Complexity in Forecasting and Early Warning. Springer, New York, p. 364–383. https://doi.org/10.1007/978-1-4419-7695-6_22.

33. Misharina L.A., Melnikova V.I., Baljinnyam I., 1983. South-Western Boundary of the Baikal Rift Zone from the Data on Earthquake Focal Mechanisms. Volcanology and Seismology 2, 74–83 (in Russian)

34. Riznichenko Yu.V., 1985. Problems of Seismology. Nauka, Moscow, 408 p. (in Russian)

35. Sankov V.A., Levi K.G., Lukhnev A.V., Miroshnichenko A.I., Parfeevets A.V., Radziminovich N.A., Melnikova V.I., Deverchere J. et al., 2002. Recent Geodynamics of the Mongol-Siberian Mobile Belt from the Geological-Structural and Instrumental Data. In: Tectonics and Geophysics of the Lithosphere. Proceedings of the XXXV Tectonic Meeting (January 1 – December 31, 2002). Vol. 2. GEOS, Moscow, p. 170–174 (in Russian)

36. Sankov V.A., Lukhnev A.V., Miroshnichenko A.I., Levi K.G., Ashurkov S.V., Bashkuev Yu.B., Dembelov M.G., Calais E. et al., 2003. Present-Day Movements of the Earth’s Crust in the Mongol-Siberian Region Inferred from GPS Geodetic Data. Doklady Earth Sciences 393 (8), 1082–1085.

37. Scholz C.H., 2002. The Mechanics of Earthquakes and Faulting. Cambridge University Press, Cambridge, 496 p. https://doi.org/10.1017/CBO9780511818516.

38. Sycheva N.A., 2023. Study of Seismotectonic Deformations of the Earth’s Crust in the Altai-Sayan Mountain Region. Part I. Geosystems of Transition Zones 7 (3), 223–242 (in Russian) https://doi.org/10.30730/gtrz.2023.7.3.223-242.

39. Sycheva N.A., Bogomolov L.M., 2016. Patterns of Stress Drop in Earthquakes of the Northern Tien Shan. Russian Geology and Geophysics 57 (11), 1635–1645. https://doi.org/10.1016/j.rgg.2016.10.009.

40. Sycheva N.A., Bogomolov L.M., 2020. On the Stress Drop in North Eurasia Earthquakes Source Versus Specific Seismic Energy. Geosystems of Transition Zones 4 (4), 393–446. https://doi.org/10.30730/gtrz.2020.4.4.393-416.417-446.

41. Sycheva N.A., Bogomolov L.M., Kuzikov S.I., 2020. Computational Technologies in Seismological Research (on the Example of KNET, Northern Tian Shan). IMGG FEB RAS, Yuzhno-Sakhalinsk, 358 p. (in Russian) https://doi.org/10.30730/978-5-6040621-6-6.2020-2.

42. Sycheva N.A., Rebetsky Yu.L., 2024. Comparing the STDand MCA-Based Estimates of the Crustal Deformation in the Altai-Sayan Mountain Region. In: Tectonophysics and Challenges in Earth Sciences. Proceedings of the Sixth Tectonophysical Conference to the 300th Anniversary of the Russian Academy of Sciences (October 7–12, 2024). IPE RAS, Moscow, p. 329–336 (in Russian)

43. Sycheva N.A., Sychev V.N., 2022. Some Characteristics of Seismicity in the Altai and Sayan Mountains. In: Problems of Geocosmos – 2022. Proceedings of the XIV School-Conference with an International Participation (October 3–7, 2022). Skifia-Print, Saint Petersburg, p. 84–92 (in Russian)

44. Vakov A.V., 1988. Relationships Between Earthquake Magnitude and Source Dimensions at Different Types of Fault Movements. Collection of Gidroproekt Scientific Papers. Iss. 130. Energoizdat, Moscow, p. 55–69 (in Russian)

45. Zakharova A.I., Chepkunas L.S., Malyanova L.S., 2009. Source Parameters of Strong Earthquakes. Earthquakes of the Northern Eurasia. Iss. 12 (2003). GS RAS, Obninsk, p. 255–260 (in Russian)

46. Zavyalov A.D., Zotov O.D., 2021. A New Way to Determine the Characteristic Size of the Source Zone. Journal of Volcanology and Seismology 15 (1), 19–25. https://doi.org/10.1134/S0742046321010139.


Review

For citations:


Sycheva N.A., Bogomolov L.M. DISTRIBUTION OF REDUCED SEISMIC ENERGY AND STRESS DROP IN THE ALTAI-SAYAN SEISMOACTIVE REGION. Geodynamics & Tectonophysics. 2025;16(4):0835. https://doi.org/10.5800/GT-2025-16-4-0835. EDN: HWNUFQ

Views: 22


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)