Preview

Geodynamics & Tectonophysics

Advanced search

LATE NEOPROTEROZOIC RARE-METAL LEUCOGRANITE FROM THE KHARIUSIKHA MASSIF OF YENISEI RIGDE: GENESIS AND RELATIONSHIP TO MAGMATISM OF A LARGE IGNEOUS PROVINCE

https://doi.org/10.5800/GT-2025-16-3-0827

EDN: hsphpe

Abstract

The paper deals with the petrogeochemical composition and U-Pb (SHRIMP-II) age (753±6 Ma) of subalkaline leucogranites and syenites from the Khariusikha massif of the Yenisei Ridge, which contain rare-metal mineralization. High trace-element concentrations (%) – Nb (0.5–0.7), Ta (0.12–0.16), REE (0.08–0.24), Y (0.06–0.10), Zr (2.3–2.6), Hf (0.10–0.12), U (0.05–0.10) and Th (0.08–0.10) – are confined to albitized granites. Synthesis information on age and composition of rhyolites of the bimodal volcanic associations of the Upper Vorogovka and Glushikha troughs and subsynchronous granitoids of the Trans-Angarian Yenisei Ridge indicates A-type granitoids. Their formation is limited to 750–720 Ma interval and is temporally correlated with the formation of a Late Neoproterozoic large igneous province whose ultrabasite-basite magmatism is localized along the present-day southern flank of the Siberian Platform. The considered volcanic and intrusive rocks are characterized by wide-range high field strength element concentrations and εNd(t) values ranging from –9.2 to +0.7. Crustal sources are dominant for most of the felsic magmatic rocks. A probable contribution of the mantle source to felsic magmas generation is evidenced by more radiogenic Nd isotope composition and enrichment of the Khariusikha massif granites and syenites in high field strength elements, as well as by the similarity of the Upper Vorogovka trough basalts with OIB.

About the Authors

A. D. Nozhkin
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
Russian Federation

 3 Academician Koptyug Ave, Novosibirsk 630090 



O. M. Turkina
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
Russian Federation

 Olga M. Turkina 

 3 Academician Koptyug Ave, Novosibirsk 630090 



References

1. Ariskin A.A., Kostitsyn Yu.A., Konnikov E.G., Danyushevsky L.V., Meffre S., Nikolaev G.S., McNeill A., Kislov E.V., Orsoev D.A., 2013. Geochronology of the Dovyren Intrusive Complex, Northwestern Baikal Area, Russia, in the Neoproterozoic. Geochemistry International 51, 859–875. https://doi.org/10.1134/S0016702913110025.

2. Bayanova T.B., 2004. Age of Reference Geological Complexes of the Kola Region and Duration of Magmatism. Nauka, Saint Petersburg, 173 p. (in Russian) [Баянова Т.Б. Возраст реперных геологических комплексов Кольского региона и длительность процессов магматизма. СПб.: Наука, 2004. 173 с.].

3. Bogaerts M., Scaillet B., Vander Auwera J.V., 2006. Phase Equilibria of the Lyngdal Granodiorite (Norway): Implications for Origin of Metaluminous Ferroan Granotoids. Journal of Petrology 47 (12), 2405–2431. https://doi.org/10.1093/petrology/egl049.

4. Bogdanova S.V., Pisarevsky S.A., Li Z.H., 2009. Assembly and Breakup of Rodinia (Some Results of IGCP Project 440). Stratigraphy and Geological Correlation 17, 259–274. https://doi.org/10.1134/S0869593809030022.

5. Boynton W.V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Rare Earth Element Geochemistry. Developments in Geochemistry 2, 63–114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3.

6. Eby G.N., 1990. The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis. Lithos 26 (1–2), 115–134. https://doi.org/10.1016/0024-4937(90)90043-Z.

7. Ernst R.E., 2014. Large Igneous Provinces. Cambridge University Press, London, 653 p. https://doi.org/10.1017/CBO9781139025300.

8. Ernst R.E., Gladkochub D.P., Söderlund U., Donskaya T.V., Pisarevsky S.A., Mazukabzov A.M., El Bilali H., 2023. Identification of the ca. 720 Ma Irkutsk LIP and Its Plume Centre in Southern Siberia: The Initiation of Laurentia-Siberia Separation. Precambrian Research 394, 107111. https://doi.org/10.1016/j.precamres.2023.107111.

9. Ernst R.E., Hamilton M.A., Söderlund U., Hanes J.A., Gladkochub D.P., Okrugin A.V., Kolotilina T., Mekhonoshin A.S. et al., 2016. Long-Lived Connection Between Southern Siberia and Northern Laurentia in the Proterozoic. Nature Geoscience 9, 464–469. https://doi.org/10.1038/ngeo2700.

10. Ernst R.E., Wingate M.T.D., Buchan K.L., Li Z.X., 2008. Global Record of 1600–700 Ma Large Igneous Provinces (LIPs): Implications for the Reconstruction of the Proposed Nuna (Columbia) and Rodinia Supercontinents. Precambrian Research 160 (1–2), 159–178. https://doi.org/10.1016/j.precamres.2007.04.019.

11. Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology 42 (11), 2033–2048. https://doi.org/10.1093/petrology/42.11.2033.

12. Frost C.D., Frost B.R., 1997. Reduced Rapakivi-Type Granites: The Tholeiite Connection. Geology 25 (7), 647–650. https://doi.org/10.1130/0091-7613(1997)025%3C0647:RRTGTT%3E2.3.CO;2.

13. Frost C.D., Frost B.R., 2011. On Ferroan (A-Type) Granitoids: Their Compositional Variability and Modes of Origin. Journal of Petrology 52 (1), 39‒53. https://doi.org/10.1093/petrology/egq070.

14. Gladkochub D.P., Donskaya T.V., Mazukabzov A.M., Stanevich A.M., Sklyarov E.V., Ponomarchuk V.A., 2007. Signature of Precambrian Extension Events in the Southern Siberian Craton. Russian Geology and Geophysics 48 (1), 17–31. https://doi.org/10.1016/j.rgg.2006.12.001.

15. Gladkochub D.P., Pisarevsky S.A., Donskaya T.V., Ernst R.E., Wingate M.T., Söderlund U., Mazukabzov A.M., Sklyarov E.V., Hamilton M.A., Hanes J.A., 2010. Proterozoic Mafic Magmatism in Siberian Craton: An Overview and Implications for Paleocontinental Reconstruction. Precambrian Research 183 (3), 660–668. https://doi.org/10.1016/j.precamres.2010.02.023.

16. Goldstein S.J., Jacobsen S.B., 1988. Nd and Sm Isotopic Systematics of Rivers Water Suspended Material: Implications for Crustal Evolution. Earth and Planetary Science Letters 87 (3), 249–265. https://doi.org/10.1016/0012-821X(88)90013-1.

17. Jacobsen S.B., Wasserburg G.J., 1984. Sm-Nd Evolution of Chondrites and Achondrites. Earth Planetary Science Letter 67 (2), 137–150. https://doi.org/10.1016/0012-821X(84)90109-2.

18. Likhanov I.I., Nozhkin A.D., Reverdatto V.V., Kozlov P.S., 2014. Grenville Tectonic Events and Evolution of the Yenisei Ridge at the Western Margin of the Siberian Craton. Geotectonics 48, 371–389. https://doi.org/10.1134/S0016852114050045.

19. Likhanov I.I., Reverdatto V.V., 2019. The First U-Pb (SHRIMP II) Evidence of the Franklin Tectonic Event at the Western Margin of the Siberian Craton. Doklady Earth Science 486, 605–608. https://doi.org/10.1134/S1028334X19060187.

20. Likhanov I.I., Reverdatto V.V., Kozlov P.S., 2011. Collision-Related Metamorphic Complexes of the Yenisei Ridge: Their Evolution. Ages and Exhumation Rate. Russian Geology and Geophysics 52 (10), 1256–1269. https://doi.org/10.1016/j.rgg.2011.09.015.

21. Ludwig K.R., 1999. User’s Manual for ISOPLOT/EX, v. 2.10. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 1, 46 p.

22. Ludwig K.R., 2000. SQUID 1.00: A User’s Manual. Berkley Geochronology Center Special Publication 2, 17 p.

23. Lyons J.J., Coe R.S., Zhao X.X., Renne P.R., Kazansky A.Y., Izokh A.E., Kungurtsev L.V., Mitrokhin D.V., 2002. Paleomagnetism of the Early Triassic Semeitau Igneous Series, Eastern Kazakstan. Journal of Geophysical Research: Solid Earth 107 (B7), 2139. https://doi.org/10.1029/2001JB000521.

24. Miller C.F., McDowell S.M., Mapes R.W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology 31 (6), 529–532. https://doi.org/10.1130/0091-7613(2003)031%3C0529:HACGIO%3E2.0.CO;2.

25. Nikolaeva I.V., Palesskii S.V., Koz’menko O.A., Anoshin G.N., 2008. Analysis of Geologic Reference Materials for REE and HFSE by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Geochemistry International 46, 1016–1022. https://doi.org/10.1134/S0016702908100066.

26. Nozhkin A.D., Borisenko A.S., Nevol’ko P.A., 2011. Stages of Late Proterozoic Magmatism and Periods of Au Mineralization in the Yenisei Ridge. Russian Geology and Geophysics 52 (1), 124–143. https://doi.org/10.1016/j.rgg.2010.12.010.

27. Nozhkin A.D., Dmitrieva N.V., Kachevsky L.K., 2013. The Late Neoproterozoic Rift-Related Merarhyolite-Basalt Association of the Glushikha Trough (Yenisei Ridg): Petrogeochemical Composition, Age, and Formation Conditions. Russian Geology and Geophysics 54 (1), 44–54. https://doi.org/10.1016/j.rgg.2012.12.004.

28. Nozhkin A.D., Trofimov Yu.P., 1982. Alkaline Granite-Syenite Association of the Central Vorogovka Pluton. In: V.S. Sobolev (Ed.), Geology of Base Metal Deposits in the Folded Periphery of the Siberian Craton. Nauka, Novosibirsk, p. 61–69 (in Russian)

29. Nozhkin A.D., Turkina O.M., Bayanova T.B., 2009. Paleoproterozoic Collisional and Intraplate Granitoids of the Southwest Margin of the Siberian Craton: Petrogeochemical Features and U-Pb Geochronological and Sm-Nd Isotopic Data. Doklady Earth Sciences 428, 1192–1197. https://doi.org/10.1134/S1028334X09070344.

30. Nozhkin A.D., Turkina O.M., Bayanova T.B., Berezhnaya N.G., Larionov A.N., Postnikov A.A., Travin A.V., Ernst R.E., 2008. Neoproterozoic Rift and Within-Plate Magmatism in the Yenisei Ridge: Implications for the Breakup of Rodinia. Russian Geology and Geophysics 49 (7), 503–519. https://doi.org/10.1016/j.rgg.2008.06.007.

31. Nozhkin A.D., Turkina O.M., Bibikova E.B., Terleev A.A., Khomentovskii V.V., 1999. Riphean Granite-Gneiss Domes of the Yenisei Range: Geologic Structure and U-Pb Isotopic Age. Russian Geology and Geophysics 40 (9), 1284–1292.

32. Nozhkin A.D., Turkina O.M., Likhanov I.I., 2023. Neoproterozoic Collision Granitoids in the Southwestern Margin of the Siberian Craton: Chemical Composition, U-Pb Age, and Formation Conditions of the Gusyanka Massif. Geochemistry International 61, 484–498. https://doi.org/10.1134/S0016702923050063.

33. Nozhkin A.D., Turkina O.M., Likhanov I.I., 2024. Early Neoproterozoic Granitoids in the Ryazanovsky Massif of the Yenisei Ridge as Indicators of the Grenville Orogenesis at the Western Margin of the Siberian Craton. Geodynamics & Tectonophysics 15 (2), 0745 (in Russian) https://doi.org/10.5800/GT-2024-15-2-0745.

34. Polyakov G.V., Tolstykh N.D., Mekhonoshin A.S., Izokh A.E., Podlipskii M.Y., Orsoev D.A., Kolotilina T.B., 2013. Ultramafic-Mafic Igneous Complexes of the Precambrian East Siberian Metallogenic Province (Southern Framing of the Siberian Craton): Age, Composition, Origin, and Ore Potential. Russian Geology and Geophysics 54 (11), 1319–1331. https://doi.org/10.1016/j.rgg.2013.10.008.

35. Popov N.V., Likhanov I.I., Nozhkin A.D., 2010. Mesoproterozoic Granitoid Magmatism in the Trans-Angara Segment of the Yenisei Range: U-Pb Evidence. Doklady Earth Sciences 431, 418–423. https://doi.org/10.1134/S1028334X10040021.

36. Romanov M., Sovetov J.K., Vernikovsky V.A., Rosenbaum G., Wilde S.A., Vernikovskaya A.E., Matushkin N.Yu., Kadilnikov P.I., 2020. Late Neoproterozoic Evolution of the Southwestern Margin of the Siberian Craton: Evidence from Sedimentology, Geochronology and Detrital Zircon Analysis. International Geology Review 63 (13), 1658–1681. https://doi.org/10.1080/00206814.2020.1790044.

37. Rudnick R.L., Gao S., 2003. 3.01 – Composition of the Continental Crust. Treatise on Geochemistry 3, 1–64. https://doi.org/10.1016/B0-08-043751-6/03016-4.

38. Schuth S., Gornyy V.I., Berndt J., Shevchenko S.S., Sergeev S.A., Karpuzov A.F., Mansfeldt T., 2012. Early Proterozoic U-Pb Zircon Ages from Basement Gneiss at the Solovetsky Archipelago, White Sea, Russia. International Journal Geosciences 3, 289–296. https://doi.org/10.4236/ijg.2012.32030.

39. Sklyarov E.V., Gladkochub D.P., Mazukabzov A.M., Menshagin Y.V., Watanabe T., Pisarevsky S.A., 2003. Neoproterozoic Mafic Dike Swarms of the Sharyzhalgai Metamorphic Massif (Southern Siberian Craton). Precambrian Research 122 (1–4), 359–376. https://doi.org/10.1016/S0301-9268(02)00219-X.

40. Sun S.-S., McDonough W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications 42 (1), 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.

41. Turkina O.M., Sukhorukov V.P., 2022. Early Precambrian Granitoid Magmatism of the Kitoy Block and Stages of Collisional Events in the Southwestern Siberian Craton. Russian Geology and Geophysics 63 (5), 620–635. https://doi.org/10.2113/RGG20214385.

42. Vernikovskaya A.E., Vernikovsky V.A., Matushkin N., Kadilnikov P., Wingate M.T.D., Bogdanov E.A., Travin A.V., 2023. Cryogenian A-type Granites of the Yenisei Ridge – Indicators of Tectonic Transformation in the Southwestern Margin of the Siberian Craton. Russian Geology and Geophysics 64 (6), 647–668. https://doi.org/10.2113/RGG20224532.

43. Vernikovskaya A.E., Vernikovsky V.A., Sal’nikova E.B., Datsenko V.M., Kotov A.B., Kovach V.P., Travin A.V., Yakovleva S.Z., 2002. Yeruda and Cherimba Granitoids (Yenisey Ridge) as Indicators of Neoproterozoic Collisions. Russian Geology and Geophysics 43 (3), 245–259.

44. Vernikovskaya A.E., Vernikovsky V.A., Sal’nikova E.B., Kotov A.B., Kovach V.P., Travin A.V., Palesskii S.V., Yakovleva S.Z., Yasenev A.M., Fedoseenko A.M., 2003. Neoproterozoic Postcollisional Granitoids of the Glushikha Complex, Yenisei Range. Petrology 11 (1), 48–61.

45. Vernikovskaya A.E., Vernikovsky V.A., Sal’nikova E.B., Yasenev A.M., Kotov A.B., Kovach V.P., Travin A.V., Yakovleva S.Z., Fedoseenko A.M., 2006. Neoproterozoic A-Type Granites of the Garevka Massif, Yenisey Ridge: Age, Sources, and Geodynamic Setting. Petrology 14, 50–61. https://doi.org/10.1134/S086959110601005X.

46. Vernikovskaya A.E., Vernikovsky V.A., Travin A.V., Sal’nikova E.B., Kotov A.B., Kovach V.P., Wingate M.T.D., 2007. A-Type Leucogranite Magmatism in the Evolution of Continental Crust on the Western Margin of the Siberian Craton. Russian Geology and Geophysics 48 (1), 3–16. https://doi.org/10.1016/j.rgg.2006.12.002.

47. Vernikovsky V.A., Pease V.L., Vernikovskaya A.E., Romanov A.P., Gee D.G., Travin A.V., 2003. First Report of Early Triassic A-Type Granite and Syenite Intrusions from Taimyr: Product of the Northern Earasian Superplume? Lithos 66 (1–2), 23–36. https://doi.org/10.1016/S0024-4937(02)00192-5.

48. Vernikovsky V.A., Vernikovskaya A.E., 2006. Tectonics and Evolution of Granitoid Magmatism in the Yenisei Ridge. Russian Geology and Geophysics 47 (1), 32–50.

49. Watson E.B., Harrison T.M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters 64 (2), 295–304. https://doi.org/10.1016/0012-821X(83)90211-X.

50. Williams I.S., 1998. U-Th-Pb Geochronology by Ion Microprobe. In: M.A. McKibben, W.C. Shanks III, W.I. Ridley (Eds), Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology. Vol. 7, p. 1–35. https://doi.org/10.5382/Rev.07.01.

51. Yarmolyuk V.V., Kovalenko V.I., 2001. Late Riphean Breakup Between Siberia and Laurentia: Evidence from Intraplate Magmatism. Doklady Earth Science 379 (5), 525–528.


Review

For citations:


Nozhkin A.D., Turkina O.M. LATE NEOPROTEROZOIC RARE-METAL LEUCOGRANITE FROM THE KHARIUSIKHA MASSIF OF YENISEI RIGDE: GENESIS AND RELATIONSHIP TO MAGMATISM OF A LARGE IGNEOUS PROVINCE. Geodynamics & Tectonophysics. 2025;16(3):0827. (In Russ.) https://doi.org/10.5800/GT-2025-16-3-0827. EDN: hsphpe

Views: 93


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)