Preview

Geodynamics & Tectonophysics

Advanced search

THE FIRST RESULTS OF STUDIES OF TEMPORARY VARIATIONS IN SOILRADON ACTIVITY OF FAULTS IN WESTERN PRIBAIKALIE

https://doi.org/10.5800/GT-2013-4-1-0088

Abstract

Radon concentrations in soil air are variable depending on factors that are considered external (planetary) and internal (geodynamic) relative to the Earth. In active fault zones, variations of gas emanations are most intense. A permanent monitoring station was established near Tyrgan settlement in Western Pribaikalie to study temporal variations of soil radon concentration, Q, in the faults of the Baikal rift, East Siberia. This station is located in the zone of the Primorsky normal fault that is the largest in the region. The station is equipped with radon radiometer PPA01M03 that records Q values every 85 minutes and also monitors a number of meteorological parameters, including atmospheric pressure, humidity, and air temperature.
We analysed records of two measurement sessions (148 and 66 days) covering a part of the year during which field measurement of Q are possible in the cold climate conditions of the area under study. According to the available monitoring data, variations of radon concentrations in the Primorsky fault zone may vary by more than one order of magnitude through a springsummerautumn period, and such variations are oscillatory. Significant changes of permeability in time occur due to intensive changes in the state of stresses of the rock massives under the impacts of the planetary and geodynamic factors. The influence of the first group of factors, i.e. planetary ones, is manifested by synchronous oscillations of radon concentrations and atmospheric pressure, which phases of occurrence are opposed. Domination of daily and fourday periods gives evidence that the state of stresses of the rock massives is impacted by the lunar tides and cyclonic phenomena associated with the interaction between the Earth and the Sun. The influence of the second group of factors, i.e. geodynamic ones, is suggested by an evident relation between radon emanations and seismic events, including the catastrophic earthquake in Japan (March 11, 2011, M=9.0).
Tectonophysics
The external and internal factors are acting together, but their roles are different with regard to variations of radon concentrations in different periods of time. In the monitoring periods, radon emanation variations were mainly controlled by the planetary factors. Radon exhalation increases and decreases according to periodic variations in atmospheric pressure, which, in additional to ‘pumping’ effects, may lead to opening/closure of pores and cracks in the rocks. While external pressures are reduced, internal stresses are released by relatively weak earthquakes. The guiding influence of atmospheric pressure on the yield of radon is disturbed when internal stresses are in excess of a certain level due to intensive movements along faults in the Baikal rift or displacements of plates in neighbouring active zones (for example, due to the strongest earthquake in Japan). In such relatively short periods of time, when seismic activity is increased, the influence of tectonic stresses on permeability of rocks and radon emanations becomes dominant.
Based on our analysis of the measurements of soil radon concentrations obtained on the local site in the Primorsky fault zone through the monitoring period, it became possible, for the first time for Pribaikalie, to reveal and theoretically model the principal specific features of variation of soil radon concentrations, Q, in time and the dependence of such variations on the external and internal factors. Prospects of these studies are related to installation of a network of monitoring stations in the territory of the Baikal rift and assurance of longterm monitoring sessions.

About the Authors

К. Zh. Seminsky
Institute of the Earth’s Crust, Siberian Branch of RAS
Russian Federation
Doctor of Geology and Mineralogy, Head of Laboratory of Tectonophysics


А. А. Bobrov
Institute of the Earth’s Crust, Siberian Branch of RAS
Russian Federation
Candidate of Geology and Mineralogy, Junior Researcher


References

1. AlBataina B.A., AlTaj M.M., Atallah M.Y., 2005. Relation between radon concentrations and morphotectonics of the Dead Sea transform in Wadi Araba, Jordan. Radiation Measurements 40 (2–6), 539–543. http://dx.doi.org/10.1016/j.radmeas. 2005.06.023.

2. Angelone M., Gasparini C., Guerra M., Lombardi S., Pizzino L., Quattrocchi F., Sacchi E., Zuppi G.M., 2005. Fluid geochemistry of the Sardinian RiftCampidano Graben (Sardinia, Italy): fault segmentation, seismic quiescence of geochemically «active» faults, and new constraints for selection of CO2 storage sites. Applied Geochemistry 20 (2), 317–340. http://dx.doi.org/10.1016/j.apgeochem.2004.08.008.

3. Atallah M.Y., AlBataina B.A., Mustafa H., 2001. Radon emanation along the Dead Sea transform (rift) in Jordan. Environmental Geology 40 (11–12), 1440–1446. http://dx.doi.org/10.1007/s002540100337.

4. Baykara O., Inceoz M., Dogru M., Aksoy E., Kulahci F., 2009. Soil radon monitoring and anomalies in East Anatolian fault system (Turkey). Journal of Radioanalytical and Nuclear Chemistry 279 (1), 159–164. http://dx.doi.org/10.1007/s1096700772112.

5. Chernyago B.P., Nepomnyashchikh A.I., Kalinovskii G.I., 2008. Soiltodwelling radon isotope ratio in the Baikal region. Russian Geology and Geophysics 49 (12), 971–977. http://dx.doi.org/10.1016/j.rgg.2008.03.009.

6. Chernyago B.P., Nepomnyashchikha A.I., Medvedev V.I., 2012. Current radiation environment in the Central Ecological Zone of the Baikal Natural Territory. Russian Geology and Geophysics 53 (9), 926–935. http://dx.doi.org/10.1016/j.rgg.2012. 07.008.

7. Cicerone R.D., Ebel J.E., Britton J., 2009. A systematic compilation of earthquake precursors. Tectonophysics 476 (3–4), 371–396. http://dx.doi.org/10.1016/j.tecto.2009.06.008.

8. Delvaux D., Moyes R., Stapel G., Petit C., Levi K., Miroshnitchenko А., Ruzhich V., San'kov V., 1997. Paleostress reconstruction and geodynamics of the Baikal region, Central Asia, Part 2. Cenozoic rifting. Tectonophysics 282 (1–4), 1–38. http://dx.doi.org/10.1016/S00401951(97)002102.

9. Dombrovskaya Zh.V., 1973. The Paleogene Weathering Crust of the Central Baikal. Nauka, Moscow, 153 p. (in Russian) [Домбровская Ж.В. Палеогеновая кора выветривания Центрального Прибайкалья. М.: Наука, 1973. 153 с.].

10. Font Ll., Baixeras C., Moreno V., Bach J., 2008. Soil radon levels across the Amer fault. Radiation Measurements 43 (Supplement 1), S319–S323. http://dx.doi.org/10.1016/j.radmeas.2008.04.072.

11. Ghosh D., Deb A., Sengupta R., 2009. Anomalous radon emission as precursor of earthquake. Journal of Applied Geophysics 69 (2), 67–81. http://dx.doi.org/10.1016/j.jappgeo.2009.06.001.

12. Ioannides K., Papachristodoulou C., Stamoulis K., Karamanis D., Pavlides S., Chatzipetros A., Karakala E., 2003. Soil gas radon: a tool for exploring active fault zones. Applied Radiation and Isotopes 59 (2–3), 205–213. http://dx.doi.org/10. 1016/S09698043(03)001647.

13. Kemski J., Klingel R., Siehl A., 1996. Classification and mapping of radon affected areas in Germany. Environment International 22 (1), 789–798. http://dx.doi.org/10.1016/S01604120(96)001857.

14. King C.Y., 1978. Radon emanation on San Andreas fault. Nature 271 (5645), 516–519. http://dx.doi.org/10.1038/271516a0.

15. Koike K., Yoshinaga T., Asaue H., 2009. Radon concentrations in soil gas, considering radioactive equilibrium conditions with application to estimating faultzone geometry. Environmental Geology 56 (8), 1533–1549. http://dx.doi.org/10.1007/ s002540081252x.

16. Koval P.V., Udodov Yu.N., San’kov V.A., Yasenovskii A.A., Andrulaitis L.D., 2006. Geochemical activity of faults in the Baikal rift zone (Mercury, Radon, and Thoron). Doklady Earth Sciences 409 (6), 912–915. http://dx.doi.org/10.1134/ S1028334X06060171.

17. Levi K.G., Arzhannikova A.V., Buddo V.Yu., Kirillov P.G., Lukhnev A.V., Miroshnichenko A.I., Ruzhich V.V., San’kov V.A., 1997. Recent geodynamics of the Baikal rift. Razvedka i okhrana nedr 1, 10–20 (in Russian) [Леви К.Г., Аржанникова А.В., Буддо В.Ю., Кириллов П.Г., Лухнев А.В., Мирошниченко А.И., Ружич В.В., Саньков В.А. Современная геодинамика Байкальского рифта // Разведка и охрана недр. 1997. № 1. С. 10–20].

18. Logachev N.A., 2003. History and geodynamics of the Baikal rift. Russian Geology and Geophysics 44 (5), 391–406.

19. Logachev N.A., Florensov N.A., 1977. The Baikal system of rift basins. In: The role of rifting in the geological history of the Earth. Nauka, Novosibirsk, p. 19–29 (in Russian) [Логачев Н.А., Флоренсов Н.А. Байкальская система рифтовых долин // Роль рифтогенеза в геологической истории Земли. Новосибирск: Наука, 1977. С. 19–29].

20. Mats V.D., Ufimtsev G.F., Mandelbaum M.M., Alakshin A.M., Pospeev A.V., Shimaraev M.N., Khlystov O.M., 2001. The Cenozoic Baikal Rift Basin: Its Structure and Geological History. Publishing House of SB RAS, Geo Branch, Novosibirsk, 252 p. (in Russian) [Мац В.Д., Уфимцев Г.Ф., Мандельбаум М.М., Алакшин А.М., Поспеев А.В., Шимараев М.Н., Хлыстов О.М. Кайнозой Байкальской рифтовой впадины: строение и геологическая история. Новосибирск: Издательство СО РАН. Филиал «Гео», 2001. 252 с.].

21. Mel'nikova V.I., Radziminovich N.A., 1998. Mechanisms of action of earthquake foci in the Baikal region over the period 1991–1996. Geologiya i Geofizika 39 (11), 1598–1607.

22. Petit C., Deverchere J., HoudryLemont F., Sankov V., Melnikova V., Delvaux D., 1996. Presentday stress field changes along the Baikal rift and tectonic implications. Tectonics 15 (6), 1171–1191. http://dx.doi.org/10.1029/96TC00624.

23. Richon P., Klinger Y., Tapponnier P., Li C.X., Van Der Woerd J., Perrier F., 2010. Measuring radon flux across active faults: Relevance of excavating and possibility of satellite discharges. Radiation Measurements 45 (2), 211–218. http:// dx.doi.org/10.1016/j.radmeas.2010.01.019.

24. Rikitake T., 1978. Biosystem behaviour as an earthquake precursors. Tectonophysics 51 (1–2), 1–20. http://dx.doi.org/10. 1016/00401951(78)900483.

25. Rudakov V.P., 1985. On baric variations of subsoil radon. Geokhimiya 1, 124–127 (in Russian) [Рудаков В.П. О барических вариациях подпочвенного радона // Геохимия. 1985. № 1. С. 124–127].

26. Ruzhich V.V., 1997. Seismotectonic Destruction in the Crust of the Baikal Rift Zone. Publishing House of SB RAS, Novosibirsk, 144 p. (in Russian) [Ружич В.В. Сейсмотектоническая деструкция в земной коре Байкальской рифтовой зоны. Новосибирск: Издательство СО РАН, 1997. 144 с.].

27. Schery S.D., Gaeddert D.H., Wilkening M.H., 1982. Transport of radon from fractured rock. Journal of Gephysical Research: Solid Earth 87 (B4), 2969–2976. http://dx.doi.org/10.1029/JB087iB04p02969.

28. Seminsky K.Zh., Bobrov A.A., 2009a. Radon activity of faults (Western Baikal and Southern Angara areas). Russian Geology and Geophysics 50 (8), 674–684. http://dx.doi.org/10.1016/j.rgg.2008.12.010.

29. Seminsky K.Zh., Bobrov A.A., 2009b. Comparative assessment of radon activity for different fault types and scale ranks in the Baikal rift and South of the Siberian Platform. Doklady Earth Sciences 427 (6), 915–919. http://dx.doi.org/10.1134/ S1028334X09060063.

30. Seminsky K.Zh., Bobrov A.A., 2012. Spatial and temporal variations of soilradon activity in fault zones of the Pribaikalie (East Siberia, Russia). In: Z. Li, C. Feng (Eds.), Handbook of Radon: Properties, Applications and Health. Chapter 1, Nova Science Publication Inc.: New York, р. 1–36.

31. Seminsky K.Zh., Kozhevnikov N.O., Cheremnykh A.V., Pospeeva E.V., Bobrov A.A., Olenchenko V.V., Tugarina M.A., Potapov V.V., Burzunova Yu.P., 2012. Interblock zones of the Northwestern Baikal rift: results of geological and geophysical studies along the Bayandai Village–Cape Krestovskii profile. Russian Geology and Geophysics 53 (2), 250–269. http:// dx.doi.org/10.1016/j.rgg.2011.12.016.

32. Sherman S.I., 1977. Physical Laws of Crustal Faults. Nauka, Novosibirsk, 102 p. (in Russian) [Шерман С.И. Физические закономерности развития разломов земной коры. Новосибирск: Наука, 1977. 102 с.].

33. Spivak A.A., 2010. The specific features of geophysical fields in the fault zones. Izvestiya, Physics of the Solid Earth 46 (4), 327–338. http://dx.doi.org/10.1134/S1069351310040051.

34. Tansi C., Tallarico A., Iovine G., Folino Gallo M., Falcone G., 2005. Interpretation of radon anomalies in seismotectonic and tectonicgravitational settings: the southeastern Crati graben (Northern Calabria, Italy). Tectonophysics 396 (3–4), 181–193. http://dx.doi.org/10.1016/j.tecto.2004.11.008.

35. Toutain J.P., Baubron J.C., 1999. Gas geochemistry and seismotectonics: a review. Tectonophysics 304 (1–2), 1–27. http://dx.doi.org/10.1016/S00401951(98)002959.

36. Utkin V.I., Mamyrov E., Kan M.V., Krivasheev S.V., Yurkov A.K., Kosyakin I.I., Shishkanov A.N., 2006. Radon monitoring in the Northern Tien Shan with application to the process of tectonic earthquake nucleation. Izvestiya, Physics of the Solid Earth 42 (9), 775–784. http://dx.doi.org/10.1134/S1069351306090072.

37. Utkin V.I., Yurkov A.K., 2010. Radon as a tracer of tectonic movements. Russian Geology and Geophysics 51 (2), 220–227. http://dx.doi.org/10.1016/j.rgg.2009.12.022.

38. Voitov G.I., 1998. Application of the neural network approach to the reconstruction of a threedimensional geoelectric structure. Izvestiya, Physics of the Solid Earth 34 (1), 33–39.

39. Zmazek B., Todorovski L., Dzeroski S., Vaupotic J., Kobal I., 2003. Application of decision trees to the analysis of soil radon data for earthquake prediction. Applied Radiation and Isotopes 58 (6), 697–706. http://dx.doi.org/10.1016/S09698043 (03)000940.

40. Zolotarev A.G., Khrenov P.M., 1979. Map of Recent Tectonics of the Southern East Siberia, scale 1: 1 500 000 (in Russian) [Золотарев А.Г., Хренов П.М., 1979. Карта новейшей тектоники юга Восточной Сибири. Масштаб 1 : 1 500 000].

41. Zubkov S.I., 1981. Radon earthquake precursors. Vulkanologiya i Seismologiya 6, 74–105 (in Russian) [Зубков С.И. Радоновые предвестники землетрясений // Вулканология и сейсмология. 1981. № 6. С. 74–105].


Review

For citations:


Seminsky К.Zh., Bobrov А.А. THE FIRST RESULTS OF STUDIES OF TEMPORARY VARIATIONS IN SOILRADON ACTIVITY OF FAULTS IN WESTERN PRIBAIKALIE. Geodynamics & Tectonophysics. 2013;4(1):1-12. (In Russ.) https://doi.org/10.5800/GT-2013-4-1-0088

Views: 1433


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)