AGE AND GEODYNAMIC SETTINGS OF THE FORMATION OF CRETACEOUS IGNEOUS ROCKS ALONG THE WESTERN BOUNDARY OF THE BADZHAL TERRANE (SIKHOTE-ALIN OROGENIC BELT)
https://doi.org/10.5800/GT-2025-16-1-0806
EDN: kqxxbe
Abstract
The paper presents the results of the study of geochemistry and U-Pb zircon dating of Cretaceous igneous rocks of the westernmost part of the Badzhal terrane within the Badzhal and Dusse-Alin volcanic zones of the Khingan-Okhotsk magmatic belt. The granites of the Verkhneurmysky pluton and Pravourmyskaya dyke in the Badzhal zone were dated at 100±1 and 93±1 Ma, respectively. The age of diorite in the Suluk-Egono interfluve of the Dusse-Alin zone was estimated at 88±1 Ma, and the ages of three tuff zircon populations were estimated at 88±2, 97±1 and 105.5±1.3 Ma. The dating results indicate that the synorogenic reduced granites of the Verkhneurmysky ore cluster were formed under the transform continental margin regime, which gave rise to the occurrence of a large Albian-Cenomanian magmatic province of Pacific Asia. The magnetite series diorites of the Dusse-Alin zone were formed during the subsequent subduction-related Turonian-Maastrichian stage, but their geochemical characteristics are not typical of suprasubduction magmas. This may indicate a later transition to subduction at this section of the continental margin, or the existence of local extension and/or transcurrent faulting in the subduction settings. The studied igneous rocks of both stages and volcanic zones were formed with significant involvement of material from the mature continental crust, and are characterized by a similar range of εNd(t) values from –0.9 to –2.6 and two-stage Nd model ages from 1.22 to 1.05 Ga.
Keywords
About the Authors
I. A. AlexandrovRussian Federation
159 100-letya Ave, Vladivostok 690022
A. Yu. Levedev
Russian Federation
159 100-letya Ave, Vladivostok 690022
V. V. Ivin
Russian Federation
159 100-letya Ave, Vladivostok 690022
B. I. Semenyak
Russian Federation
159 100-letya Ave, Vladivostok 690022
V. V. Ratkin
Russian Federation
159 100-letya Ave, Vladivostok 690022
S. Yu. Budnitskiy
Russian Federation
159 100-letya Ave, Vladivostok 690022
References
1. Alekseev V.I., Marin Y.B., Kapitonov I.N., Sergeev S.A., 2013. Age and Material Sources of Lithium-Fluorine Granites of the Far East (U-Pb and Lu-Hf Isotope Data). Doklady Earth Sciences 449 (2), 444–446. https://doi.org/10.1134/S1028334X1304017X.
2. Alexandrov I.A., Ivin V.V., Budnitskiy S.Yu., Moskalenko E.Yu., 2023. Age of Granitoids of the Bekchiul Pluton (Lower Amur Region). Geodynamics & Tectonophysics 14 (2), 0694 (in Russian). https://doi.org/10.5800/GT–2023–14–2–0694.
3. Anders E., Grevesse N., 1989. Abundances of the Elements: Meteoritic and Solar. Geochimica et Cosmochimica Acta 53 (1), 197–214. https://doi.org/10.1016/0016-7037(89)90286-X.
4. Bortnikov N.S., Aranovich L.Yа., Kryazhev S.G., Smirnov S.Z., Dubinina E.O., Gonevchuk V.G., Semenyak B.I., Gorelikova N.V., Sokolova E.N., 2019. Badzhal Tin Magmatic-Fluid System, Far East, Russia: Transition from Granite Crystallization to Hydrothermal Ore Deposition. Geology of Ore Deposits 61, 199–224. https://doi.org/10.1134/S1075701519030036.
5. Derbeko I.M., Sorokin A.A., Ponomarchuk V.A., Travin A.V., Sorokin A.P., 2008a. First Geochronological Data on Felsic Lavas from the Ezop-Yamalin Volcanoplutonic Zone, Khingan-Okhotsk Volcanogenic Belt. Doklady Earth Sciences 419, 231–234. https://doi.org/10.1134/S1028334X08020098.
6. Derbeko I.M., Sorokin A.A., Sal’nikova E.B., Kotov A.B., Sorokin A.P., Yakovleva S.Z., Fedoseenko A.M., Plotkina Yu.V., 2008b. Age of Felsic Volcanism in the Selitkan Zone of the Khingan-Okhotsk Volcanoplutonic Belt, Russian Far East. Doklady Earth Sciences 418, 28–31. https://doi.org/10.1007/s11471–008–1007–x.
7. Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology 42 (11), 2033–2048. https://doi.org/10.1093/petrology/42.11.2033.
8. Goldstein S.J., Jacobsen S.B., 1988. Nd and Sr Isotopic Systematics of Rivers Water Suspended Material: Implications for Crustal Evolution. Earth and Planetary Science Letters 87 (3), 249–265. https://doi.org/10.1016/0012-821X(88)90013-1.
9. Gonevchuk V.G., Khanchuk A.I., Gonevchuk G.A., Lebedev V.A., 2015. New K-Ar Biotite and Amphibole Ages of Granitoids of Sikhote-Alin (Russian Far East): Criteria of Reliability and Interpretation. Russian Journal of Pacific Geology 9, 411–427. https://doi.org/10.1134/S1819714015060032.
10. Ishihara S., 1998. Granitoid Series and Mineralization in the Circum‐Pacific Phanerozoic Granitic Belts. Resource Geology 48 (4), 219–224. https://doi.org/10.1111/j.1751-3928.1998.tb00019.x.
11. Jacobsen S.B., Wasserburg G.J., 1984. Sm-Nd Isotopic Evolution of Chondrites and Achondrites II. Earth and Planetary Science Letters 67 (2), 137–150. https://doi.org/10.1016/0012-821X(84)90109-2.
12. Jahn B.-M., Valui G., Kruk N., Gonevchuk V., Usuki M., Wu J.T.J., 2015. Emplacement Ages, Geochemical and Sr-Nd-Hf Isotopic Characterization of Mesozoic to Early Cenozoic Granitoids of the Sikhote-Alin Orogenic Belt, Russian Far East: Crustal Growth and Regional Tectonic Evolution. Journal of Asian Earth Sciences 111, 872–918. https://doi.org/10.1016/j.jseaes.2015.08.012.
13. Kemkin I.V., Grebennikov A.V., Ma X.-H., Sun K.-K., 2022. Late Cretaceous Granitoids of the Sikhote-Alin Orogenic Belt, Southeastern Russia: Implications for the Mesozoic Geodynamic History of the Eastern Asian Continental Margin. Journal of the Geological Society 179 (4), jgs2021-109. https://doi.org/10.1144/jgs2021-109.
14. Keto L.S., Jacobsen S.B., 1987. Nd and Sr Isotopic Variations of Early Paleozoic Oceans. Earth Planetary Science Letters 84 (1), 27–41. https://doi.org/10.1016/0012–821X(87)90173–7.
15. Khanchuk A.I. (Ed.), 2006a. Geodynamics, Magmatism and Metallogeny of the Eastern Regions of Russia. Book 1. Dal’nauka, Vladivostok, 572 p. (in Russian).
16. Khanchuk A.I. (Ed.), 2006b. Geodynamics, Magmatism and Metallogeny of the Eastern Regions of Russia. Book 2. Dal’nauka, Vladivostok, 409 p. (in Russian).
17. Khanchuk A.I., Grebennikov A.V., Ivanov V.V., 2019. Albian-Cenomanian Orogenic Belt and Igneous Province of Pacific Asia. Russian Journal of Pacific Geology 13, 187–219. https://doi.org/10.1134/S1819714019030035.
18. Khanchuk A.I., Kemkin I.V., Kirillov V.E., Ivanov V.V., Kiryanov M.F., Trushin S.I., 2024. Ulban Terrane (Zone) as Part of the Jurassic Accretionary Complex of the Sikhote-Alin Orogenic Belt. Russian Journal of Pacific Geology 18, 233–247. https://doi.org/10.1134/S1819714024700015.
19. Kiselev M.V., Alexandrov I.A., Ivin V.V., Ratkin V.V., 2025 (in press). Ore-Forming Reduced Granitoids of the Albazino Gold Deposit (Khabarovsk Territory): Age, Geochemistry, Petrogenesis. Doklady Earth Sciences.
20. Lebedev A.Yu., Alexandrov I.A., Ivin V.V., 2024. New Results of U/Pb Dating of Cretaceous Igneous Rocks of the Komsomolsk Ore District (Middle Amur River Area). Doklady Earth Sciences 515, 632–638. https://doi.org/10.1134/S1028334X23603802.
21. Lebedev V.A., Arakelyants M.M., Gol’tsman Yu.V., Oleinikova T.I., 1999. Geochronology of Magmatism, Rock Alteration, and Ore Deposition at the Verkhneurmiisk Ore Field (Khabarovskii Krai, Russia). Geology of Ore Deposits 41 (1), 61–71.
22. Lebedev V.A., Ivanenko V.V., Karpenko M.I., 1997. Geochronology of the Volcano-Plutonic Complex of the Verkhneurmi Ore Field, Khabarovsk Krai, Russia: K-Ar, 39Ar-40Ar, and Rb-Sr Isotopic Data. Geology of Ore Deposits 39 (4), 311–319.
23. Lishnevsky E.N., Gershanik S.Yu., 1992. Three-Dimensional Structure of the Badzhalsk Tin-Ore District (Amur Region). Geology of Ore Deposits 34 (1), 80–94 (in Russian).
24. McDonough W.F., Sun S.-S., 1995. The Composition of the Earth. Chemical Geology 120 (3–4), 223−253. https://doi.org/10.1016/0009-2541(94)00140-4.
25. Middlemost E.A.K., 1985. Naming Materials in the Magma/Igneous Rock System. Earth-Sciences Reviews 37 (3–4), 215–224. https://doi.org/10.1016/0012–8252(94)90029–9.
26. Pearce J.A., Harris N.B.W., Tindle A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology 25 (4), 956–983. https://doi.org/10.1093/petrology/25.4.956.
27. Peccerillo A., Taylor S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology 58, 63–81. https://doi.org/10.1007/BF00384745.
28. Ratkin V.V., Chugaev A.V., Alexandrov I.A., Semenyak B.I., Tikhomirov D.V., Lebedev A.Yu., 2025 (in press). Crustal and Mantle Sources of Lead in W-Cu-Sn Ores of the Badzhal-Komsomolsk Metallogenic Zone of the Sikhote-Alin. Russian Journal of Pacific Geology.
29. Sato K., Vrublevsky A.A., Rodionov S.M., Romanovsky N.P., Nedachi M., 2002. Mid-Cretaceous Episodic Magmatism and Tin Mineralization in Khingan-Okhotsk Volcano–Plutonic Belt, Far East Russia. Resource Geology 52 (1), 1–14. https://doi.org/10.1111/j.1751-3928.2002.tb00112.x.
30. Sinclair W.D., 2007. Porphyry deposits. In: W.D. Goodfellow (Ed.), Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada Special Publication 5, p. 223–243.
31. Sorokin A.A., Ponomarchuk V.A., Derbeko I.M., Sorokin A.P., 2005. 40Ar/39Ar Geochronology and Geochemical Characteristics of Mesozoic Igneous Complexes in the Khingan-Olonoi Volcanic Zone (Far East). Stratigraphy and Geological Correlation 13 (3), 276–290.
32. State Geological Map of the Russian Federation, 2003. Bureya Series. Scale of 1:200000. Sheet M-53-VIII (Chegdomyn). Explanatory Note. VSEGEI Publishing House, Saint Petersburg, 123 p. (in Russian).
33. State Geological Map of the Russian Federation, 2004а. Bureya Series. Scale of 1:200000. Sheet M-53-XIV (Suluk). Explanatory Note. VSEGEI Publishing House, Saint Petersburg, 102 p. (in Russian).
34. State Geological Map of the Russian Federation, 2004b. Komsomolskaya Series. Scale of 1:200000. Sheet M‑53-XV (Yarap). Explanatory Note. VSEGEI Publishing House, Saint Petersburg, 123 p. (in Russian).
35. Tanaka T., Togashi S., Kamioka H., Amakawa H., Kagami H., Hamamoto T., Yuhara M., Orihashi Y. et al., 2000. JNdi-1: A Neodymium Isotopic Reference in Consistency with Lajolla Neodymium. Chemical Geology 168 (3–4), 279–281. https://doi.org/10.1016/S0009-2541(00)00198-4.
36. Taylor S.R., McLennan S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312 p.
37. Vermeesch P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers 9 (5), 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001.
38. Whalen J.B., Currie K.L., Chappell B.W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contribution to Mineralogy and Petrology 95, 407–419. https://doi.org/10.1007/BF00402202.
Review
For citations:
Alexandrov I.A., Levedev A.Yu., Ivin V.V., Semenyak B.I., Ratkin V.V., Budnitskiy S.Yu. AGE AND GEODYNAMIC SETTINGS OF THE FORMATION OF CRETACEOUS IGNEOUS ROCKS ALONG THE WESTERN BOUNDARY OF THE BADZHAL TERRANE (SIKHOTE-ALIN OROGENIC BELT). Geodynamics & Tectonophysics. 2025;16(1):0806. (In Russ.) https://doi.org/10.5800/GT-2025-16-1-0806. EDN: kqxxbe