Preview

Geodynamics & Tectonophysics

Advanced search

Active faults paragenesis and the state of crustal stresses in the Late Cenozoic in Central Mongolia

https://doi.org/10.5800/GT-2015-6-4-0191

Abstract

Active faults of the Hangay-Hentiy tectonic saddle region in Central Mongolia are studied by space images interpretation, relief analysis, structural methods and tectonic stress reconstruction. The study results show that faults activation during the Late Cenozoic stage was selective, and a cluster pattern of active faults is typical for the study region. Morphological and genetic types and the kinematics of faults in the Hangay-Hentiy saddle region are related the direction of the ancient inherited structural heterogeneities. Latitudinal and WNW trending faults are left lateral strike-slips with reverse or thrust component (Dzhargalantgol and North Burd faults). NW trending faults are reverse faults or thrusts with left lateral horizontal component. NNW trending faults have right lateral horizontal component. The horizontal component of the displacements, as a rule, exceeds the vertical one. Brittle deformations in fault zones do not conform with the Pliocene and, for the most part, Pleistocene topography. With some caution it may be concluded that the last phase of revitalization of strike slip and reverse movements along the faults commenced in the Late Pleistocene. NE trending disjunctives are normal faults distributed mainly within the Hangay uplift. Their features are more early activation within the Late Cenozoic and the lack of relation to large linear structures of the previous tectonic stages. According to the stress tensor reconstructions of the last phase of deformation in zones of active faults of the Hangay-Hentiy saddle using data on tectonic fractures and fault displacements, it is revealed that conditions of compression and strike-slip with NNE direction of the axis of maximum compression were dominant. Stress tensors of extensional type with NNW direction of minimum compression are reconstructed for the Orkhon graben. It is concluded that the activation of faults in Central Mongolia in the Pleistocene-Holocene, as well as modern seismicity were controlled mainly by additional horizontal compression in the SW direction, which was associated with convergence of the Indian subcontinent and Eurasia. The influence of the asthenosphere flow in the SE direction at the base lithosphere is an additional factor facilitating strike-slip deformation of the crust in the study area and a possible explanation of divergent movements in the Baikal Rift, as well as the SE movement of the Amur plate. The Eastern Hangay crust is deformed under extension associated with a dynamic impact of the local mantle anomaly on the lithosphere. The boundary between the Amur plate and the Mongolian block (according to [Zonenshain, Savostin, 1979]) is fragmentary expressed in the tectonic structure. It represents a rim part of the deformation zone, embracing the Mongolian block and the adjacent uplifts of the Mongolian Altai, Tuva and Eastern Sayan. Along the boundary, compressive and transpressive strain occurred in the Pleistocene-Holocene.

About the Authors

V. A. Sankov
Institute of the Earth’s Crust, Siberian Branch of RAS, Irkutsk, Russia Irkutsk State University, Irkutsk, Russia
Russian Federation
Candidate of Geology and Mineralogy, Head of Laboratory 128 Lermontov street, Irkutsk 664033, Russia Tel. +7(3952)427903;


A. V. Parfeevets
Institute of the Earth’s Crust, Siberian Branch of RAS, Irkutsk, Russia
Russian Federation
Candidate of Geology and Mineralogy, Researcher 128 Lermontov street, Irkutsk 664033, Russia Tel. +7(3952)429534


A. I. Miroshnichenko
Institute of the Earth’s Crust, Siberian Branch of RAS, Irkutsk, Russia
Russian Federation
Candidate of Geology and Mineralogy, Senior Researcher 128 Lermontov street, Irkutsk 664033, Russia Tel. +7(3952)429534


A. V. Sankov
Institute of the Earth’s Crust, Siberian Branch of RAS, Irkutsk, Russia
Russian Federation
lead engineer 128 Lermontov street, Irkutsk 664033, Russia Tel. +7(3952)427903


A. Bayasgalan
nstitute of Astronomy and Geophysics of MAS, Ulaanbaatar, Mongolia
Russian Federation

geologist-consultant Government of Mongolia 16а Mira street, Ulaanbaatar 13381, Mongolia Тел. +976 99100340



D. Battogtokh
nstitute of Astronomy and Geophysics of MAS, Ulaanbaatar, Mongolia
Russian Federation
Researcher Bayanzurkh district, 5th khoroo, 7 building, Ulaanbaatar, Mongolia Tel: (+976) 458849; (+976) 96962112


References

1. Arzhannikova A.V., Arzhannikov S.G., Jolivet M., Vassalo R., Chauvet A., 2011. Morphotectonic analysis of Pliocene-Quaternary deformations in the southeast of the Eastern Sayan. Geotectonics 45 (2), 142–156. http://dx.doi.org/10.1134/S001685211101002X.

2. Badarch G., Cunningham W.D., Windley B.F., 2002. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Sciences 21 (1), 87–110. http://dx.doi.org/10.1016/S1367-9120(02)00017-2.

3. Bayasgalan A., Jackson J., Ritz J.-F., Carretier S., 1999. Field examples of strike-slip fault terminations in Mongolia and their tectonic significance. Tectonics 18 (3), 394–411. http://dx.doi.org/10.1029/1999TC900007.

4. Calais E., Vergnolle M., San'kov V., Lukhnev A., Miroshnitchenko A., Amarjargal Sh., Déverchère J., 2003. GPS measurements of crustal deformation in the Baikal-Mongolia area (1994–2002): Implications for current kinematics of Asia. Journal of Geophysical Research 108 (B10), 2501. http://dx.doi.org/10.1029/2002JB002373.

5. Cunningham W.D., 2001. Cenozoic normal faulting and regional doming in the southern Hangay region, Central Mongolia: implications for the origin of the Baikal rift province. Tectonophysics 331 (4), 389–411. http://dx.doi.org/10.1016/S0040-1951(00)00228-6.

6. Cunningham D., 2013. Mountain building processes in intracontinental oblique deformation belts: Lessons from the Gobi Corridor, Central Asia. Journal of Structural Geology 46, 255–282. http://dx.doi.org/10.1016/j.jsg.2012. 08.010.

7. Cunningham W.D., Windley B.F., Dorjnamjaa D., Badamgarov J., Saandar M., 1996. Late Cenozoic transpression in southwestern Mongolia and the Gobi Altai – Tien Shan connection. Earth and Planetary Science Letters 140 (1–4), 67–81. http://dx.doi.org/10.1016/0012-821X(96)00048-9.

8. De Grave J., Buslov M.M., Van Den Haute P., 2007. Distant effects of India-Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: Constraints from apatite fission-track thermochronology. Journal of Asian Earth Sciences 29 (2–3), 188–204. http://dx.doi.org/10.1016/j.jseaes.2006.03.001.

9. Delvaux D., 1993. The TENSOR program for reconstruction: examples from East African and the Baikal rift systems. Terra Abstracts (Abstr. suppl. Terra Nova) 5 (1), 216.

10. Delvaux D., 2012. Release of program Win-Tensor 4.0 for tectonic stress inversion: statistical expression of stress parameters. Geophysical Research Abstracts 14, EGU2012-5899 (EGU General Assembly). Available from: http://meetingorganizer.copernicus.org/EGU2012/EGU2012-5899.pdf.

11. Delvaux D., Moyes R., Stapel G., Petit C., Levi K., Miroshnichenko A., Ruzhich V., San’kov V., 1997. Paleostress reconstruction and geodynamics of the Baikal region, Central Asia, Part 2. Cenozoic rifting. Tectonophysics 282 (1), 1–38. http://dx.doi.org/10.1016/S0040-1951(97)00210-2.

12. Devyatkin E.V., 1981. Cenozoic of Inner Asia (Stratigraphy, Geochronology, Correlation). Nauka, Moscow, 196 p. (in Russian) [Девяткин Е.В. Кайнозой Внутренней Азии (стратиграфия, геохронология, корреляция). М.: Наука, 1981. 196 с.].

13. Dugarmaa T., Shlupp A. (Eds.), 2000. One century of seismicity of Mongolia. RCAG MAS, Ulaanbaatar.

14. Dzhurik V.I., Dugarmaa T. (Eds.), 2004. Complex Geophysical and Seismological Investigations in Mongolia. Research Centre of Astronomy and Geophysics of the Mongolian Academy of Sciences, Ulaanbaatar; Institute of the Earth's Crust SB RAS, Irkutsk, 314 p.

15. Geological map of Mongolia, 1998. Scale 1:1000000. Ulaanbaatar.

16. Gol'din S.V., Kuchai O.A., 2007. Seismic strain in the Altai-Sayan active seismic area and elements of collisional geodynamics. Russian Geology and Geophysics 48 (7), 536–557. http://dx.doi.org/10.1016/j.rgg.2007.06.005.

17. Grachev A.F. (Ed.), 2000. Neotectonics, Geodynamics and Seismicity of Northern Eurasia. Probel Publishing House, Moscow, 487 p. (in Russian) [Новейшая тектоника, геодинамика и сейсмичность Северной Евразии / Ред. А.Ф. Грачев. М.: Пробел, 2000. 487 с.].

18. Jolivet M., Ritz J.-F., Vassallo R., Larroque C., Braucher R., Todbileg M., Chauvet A., Sue C., Arnaud N., De Vicente R., Arzhanikova A., Arzhanikov S., 2007. Mongolian summits: an uplifted, flat, old but still preserved erosion surface. Geology 35 (10), 871–874. http://dx.doi.org/10.1130/G23758A.1.

19. Karagianni I., Papazachos C.B., Scordilis E.M., Karakaisis G.F., 2015. Reviewing the active stress field in Central Asia by using a modified stress tensor approach. Journal of Seismology 19 (2), 541–565. http://dx.doi.org/10.1007/ s10950-015-9481-4.

20. Levi K.G., 2007. Map of Neotectonics of the North-Eastern Sector of Asia. Scale 1:7500000. IEC SB RAS, Irkutsk (in Russian) [Леви К.Г. Карта неотектоники северо-восточного сектора Азии. Масштаб 1:7500000. Иркутск: ИЗК СО РАН, 2007].

21. Lukhnev A.V., San'kov V.A., Miroshnichenko A.I., Ashurkov S.V., Calais E., 2010. GPS rotation and strain rates in the Baikal–Mongolia region. Russian Geology and Geophysics 51 (7), 785–793. http://dx.doi.org/10.1016/j.rgg.2010. 06.006.

22. Mats V.D., Perepelova T.I., 2011. A new perspective on evolution of the Baikal rift. Geosciences frontiers 2 (3), 349–365. http://dx.doi.org/10.1016/j.gsf.2011.06.002.

23. Molnar P., Tapponier P., 1975. Cenozoic tectonics of Asia: Effects of a continental collision. Science 189 (4201), 419–426. http://dx.doi.org/10.1126/science.189.4201.419.

24. Mordvinova V.V., Deschamps A., Dugarmaa T., Déverchère J., Ulziibat M., Sankov V.A., Artem’ev A.A., Perrot J., 2007. Velocity structure of the lithosphere on the 2003 Mongolian-Baikal transect from SV waves. Izvestiya, Physics of the Solid Earth 43 (2), 119–129. http://dx.doi.org/10.1134/S1069351307020036.

25. Nikolaeva T.V., Shuvalov V.F., 1969. The main stages of sedimentation and relief development in Central Mongolia in the Mesozoic and Cenozoic. Vestnik Leningradskogo gosudarstvennogo universiteta (Bulletin of Leningrad State University) 18 (3), 17–21 (in Russian) [Николаева Т.В., Шувалов В.Ф. Основные этапы осадконакопления и развития рельефа Центральной Монголии в мезозое и кайнозое // Вестник Ленинградского государственного университета. 1969. № 18. Bып. 3. С. 17–21].

26. Parfeevets A.V., San’kov V.A., 2006. Geodynamic conditions of evolution of the Tunka Branch in the Baikal Rift System. Geotectonics 40 (5), 377–398. http://dx.doi.org/10.1134/S0016852106050050.

27. Parfeevets A.V., San’kov V.A., 2010. Late Cenozoic fields of the tectonic stresses in Western and Central Mongolia. Izvestiya, Physics of the Solid Earth 46 (5), 367–378. http://dx.doi.org/10.1134/S1069351310050010.

28. Parfeevets A.V., Sankov V.A., 2012. Late Cenozoic tectonic stress fields of the Mongolian microplate. Comptes Rendus Geoscience 344 (3–4), 227–238. http://dx.doi.org/10.1016/j.crte.2011.09.009.

29. Petit C., Déverchère J., Calais E., San'kov V., Fairhead D., 2002. Deep structure and mechanical behavior of the lithosphere in the Hangai-Hövsgöl region, Mongolia: new constraints from gravity modeling. Earth and Planetary Science Letters 197 (3–4), 133–149. http://dx.doi.org/10.1016/S0012-821X(02)00470-3.

30. Petit C., Déverchère J., Houdry F., Sankov V.A., Melnikova V.I., Delvaux D., 1996. Present-day stress field changes along the Baikal rift and tectonic implication. Tectonics 15 (6), 1171–1191. http://dx.doi.org/10.1029/96TC00624.

31. Rasskazov S.V., Chuvashova I.S., Yasnygina T.A., Fefelov N.N., Saranina E.V., 2012. Potassiс and Potassic–sodic Volcanic series in the Cenozoic of Asia. Geo Academic publishing house, Novosibirsk, 351 p. (in Russian) [Рассказов С.В., Чувашова И.С., Ясныгина Т.А., Фефелов Н.Н., Саранина Е.В. Калиевая и калинатровая вулканические серии в кайнозое Азии. Новосибирск: Академическое изд-во «Гео», 2012. 351 с.].

32. Ritz J.-F., Bourlès D., Brown E.T., Carretier S., Chéry J., Enhtuvshin B., Galsan P., Finkel R.C., Hanks T.C., Kendrick K.J., Philip H., Raisbeck G., Schlupp A., Schwartz D.P., Yiou F., 2003. Late Pleistocene to Holocene slip rates for the Gurvan Bulag thrust fault (Gobi-Altay, Mongolia) estimated with 10Be dates. Journal of Geophysical Research 108 (B3), 2162. http://dx.doi.org/10.1029/2001JB000553.

33. Rizza M., Ritz J.-F., Prentice C., Vassallo R., Braucher R., Larroque C., Arzhannikova A., Arzhannikov S., Mahan S., Massault M., Michelot J.-L., Todbileg M., and ASTER Team, 2015. Earthquake geology of the Bulnay fault (Mongolia). Bulletin of the Seismological Society of America 105 (1), 72–93. http://dx.doi.org/10.1785/0120140119.

34. San'kov V.A., Lukhnev A.V., Radziminovich N.A., Mel'nikova V.I., Miroshnichenko A.I., Ashurkov S.V., Calais E., Déverchére J., 2005. A Quantitative estimate of modern deformations of the Earth's crust in the Mongolian block (based on GPS-geodesy and seismotectonic data). Doklady Earth Sciences 403A (6), 946–949.

35. San'kov V.A., Miroshnichenko A.I., Levi K.G., Lukhnev A., Melnikov A.I., Delvaux D., 1997. Cenozoic stress field evolution in the Baikal rift zone. Bulletin du Centre de Recherches Elf Exploration Production 21 (2), 435–455.

36. San'kov V.A., Microshnichenko A.I., Parfeevets A.V., Arzhannikova A.V., Lukhnev A.V., 2004. Late cenozoic state of stress in the Earth's crust of the Khubsugul region (Northern Mongolia): Field and experimental evidence. Geotectonics 38 (2), 142–152.

37. San'kov V.A., Parfeevets A.V., 2005. Late cenozoic stressed state of active fault zones in western Mongolia and Tuva. Doklady Earth Sciences 403A (6), 852–855.

38. San’kov V.A., Parfeevets A.V., Lukhnev A.V., Miroshnichenko A.I., Ashurkov S.V., 2011. Late Cenozoic geodynamics and mechanical coupling of crustal and upper mantle deformations in the Mongolia-Siberia mobile area. Geotectonics 45 (5), 378–393. http://dx.doi.org/10.1134/S0016852111050049.

39. San’kov V.A., Parfeevets A.V., Miroshnichenko A.I., Sankov A.V., 2014. Seismogenerating structures of the peripheral zone of the India-Eurasia collision (Mongolia). In: Geodynamic evolution of the lithosphere of the Central Asian mobile belt (from ocean to continent). Issue 12. Institute of Earth's Crust, Irkutsk, p. 254–255 (in Russian) [Саньков В.А., Парфеевец А.В., Мирошниченко А.И., Саньков А.В. Сейсмогенерирующие структуры периферийной части зоны Индо-Евразийской коллизии (территория Монголии) // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту). Вып. 12. Иркутск: ИЗК СО РАН, 2014. С. 254–255].

40. Sankov V., Parfeevets A., 2014. Faults paragenesis and paleostress state in the zone of actively propagating continental strike-slip on the example of North Khangai fault (Northern Mongolia). Geophysical Research Abstracts 16, EGU2014-13207-1 (EGU General Assembly 2014). Available from: http://meetingorganizer.copernicus.org/EGU2014/EGU2014-13207-1.pdf.

41. Smekalin O.P., Imaev V.S., Chipizubov A.V., 2013. Paleoseismic studies of the Hustai Fault zone (Northern Mongolia). Russian Geology and Geophysics 54 (7), 724–733. http://dx.doi.org/10.1016/j.rgg.2013.06.007.

42. Solonenko V.P., Florensov N.A. (Eds.), 1985. Earthquakes and Fundamentals of Seismic Risk Zoning of Mongolia. Nauka, Moscow, 224 p. (in Russian) [Землетрясения и основы сейсмического районирования Монголии / Ред. В.П. Солоненко, Н.А. Флоренсов. М.: Наука, 1985. 224 с.].

43. Tiberi C., Deschamps A., Déverchère J., Petit C., Perrot J., Appriou D., Mordvinova V., Dugaarma T., Ulzibaat M., Artemiev A., 2008. Asthenospheric imprints on the lithosphere in Central Mongolia and southern Siberia from a joint inversion of gravity and seismology (MOBAL experiment). Geophysical Journal International 175 (3), 1283–1297. http://dx.doi.org/10.1111/j.1365-246X.2008.03947.x.

44. Trifonov V.G., Makarov V.I., 1988. Active faults. In: P.N. Kropotkin (Ed.), Neotectonics and modern geodynamics of mobile belts. Nauka, Moscow, p. 239–272 (in Russian) [Трифонов В.Г., Макаров В.И. Активные разломы // Неотектоника и современная геодинамика подвижных поясов / Ред. П.Н. Кропоткин. М.: Наука, 1988. С. 239–272].

45. Trifonov V.G., Soboleva O.V., Trifonov S.V., Vostrikov G.A., 2002. Modern Geodynamics of Alpine-Himalayan Collision Belt. GEOS, Moscow, 225 p. (in Russian) [Трифонов В.Г., Соболева О.В., Трифонов P.В., Востриков Г.А. Современная геодинамика Альпийско-Гималайcкого коллизионного пояcа. М.: ГЕОC, 2002. 225 c.].

46. Walker R.T., Molor E., Fox M., Bayasgalan A., 2008. Active tectonics of an apparently aseismic region: distributed active strike-slip faulting in the Hangay Mountains of Central Mongolia. Geophysical Journal International 174 (3), 1121–1137. http://dx.doi.org/10.1111/j.1365-246X.2008.03874.x.

47. Walker R.T., Nissen E., Molor E., Bayasgalan A., 2007. Reinterpretation of the active faulting in Central Mongolia. Geology 35 (8), 759–762. http://dx.doi.org/10.1130/G23716A.1.

48. Yanshin A.L. (Ed.), 1975. Mesozoic and Cenozoic tectonics and magmatism of Mongolia. Nauka, Moscow, 308 p. (in Russian) [Мезозойская и кайнозойская тектоника и магматизм Монголии / Ред. А.Л. Яншин. М.: Наука, 1975. 308 с.].

49. Zonenshain L.P., Savostin L.A., 1979. Introduction to Geodynamics. Nedra, Moscow, 311 p. (in Russian) [Зоненшайн Л.П., Савостин Л.А. Введение в геодинамику. М.: Недра, 1979. 311 с.].

50. Zorin Yu.A., Mordvinova V.V., Turutanov E.Kh., Belichenko V.G., Artemyev A.A., Kosarev G.L., Gao S.S., 2002. Low seismic velocity layers in the Earth’s crust beneath Eastern Siberia (Russia) and Central Mongolia: receiver function data and their possible geological implication. Tectonophysics 359 (3–4), 307–327. http://dx.doi.org/10.1016/S0040-1951(02)00531-0.


Review

For citations:


Sankov V.A., Parfeevets A.V., Miroshnichenko A.I., Sankov A.V., Bayasgalan A., Battogtokh D. Active faults paragenesis and the state of crustal stresses in the Late Cenozoic in Central Mongolia. Geodynamics & Tectonophysics. 2015;6(4):491-518. (In Russ.) https://doi.org/10.5800/GT-2015-6-4-0191

Views: 2034


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)