RECENT STRONG EARTHQUAKES IN CENTRAL ASIA: REGULAR TECTONOPHYSICAL FEATURES OF LOCATIONS IN THE STRUCTURE AND GEODYNAMICS OF THE LITHOSPHERE. PART 1. MAIN GEODYNAMIC FACTORS PREDETERMINING LOCATIONS OF STRONG EARTHQUAKES IN THE STRUCTURE OF THE LITHOSPHER
https://doi.org/10.5800/GT-2015-6-4-0188
Abstract
Studying locations of strong earthquakes (М≥8) in space and time in Central Asia has been among top prob-lems for many years and still remains challenging for international research teams. The authors propose a new ap-proach that requires changing the paradigm of earthquake focus – solid rock relations, while this paradigm is a basis for practically all known physical models of earthquake foci. This paper describes the first step towards developing a new concept of the seismic process, including generation of strong earthquakes, with reference to specific geodynamic features of the part of the study region wherein strong earthquakes were recorded in the past two centuries. Our analysis of the locations of М≥8 earthquakes shows that in the past two centuries such earthquakes took place in areas of the dynamic influence of large deep faults in the western regions of Central Asia. In the continental Asia, there is a clear submeridional structural boundary (95–105°E) between the western and eastern regions, and this is a factor controlling localization of strong seismic events in the western regions. Obviously, the Indostan plate’s pressure from the south is an energy source for such events. The strong earthquakes are located in a relatively small part of the territory of Central Asia (i.e. the western regions), which is significantly different from its neighbouring areas at the north, east and west, as evidenced by its specific geodynamic parameters. (1) The crust is twice as thick in the western regions than in the eastern regions. (2) In the western regions, the block structures re-sulting from the crust destruction, which are mainly represented by lense-shaped forms elongated in the submeridio-nal direction, tend to dominate. (3) Active faults bordering large block structures are characterized by significant slip velocities that reach maximum values in the central part of the Tibetan plateau. Further northward, slip velocities decrease gradually, yet do not disappear. (4) In the western regions of Central Asia, the recurrence time of strong earthquakes is about 25 years. It correlates with the regular activation of the seismic process in Asia which is mani-fested in almost the same time intervals; a recurrence time of a strong earthquake controlled by a specific active fault exceeds seems 100–250 years. (5) Mechanisms of all the strong earthquakes contain a slip component that is often accompanied by a compression component. The slip component corresponds to shearing along the faults revealed by geological methods, i.e. correlates with rock mass displacements in the near-fault medium. (6) GPS geodetic meas-urements show that shearing develops in the NW direction in the Tibet. Further northward, the direction changes to the sublatitudinal one. At the boundary of ~105°E, southward of 30°N, the slip vectors attain the SE direction. Further southward of 20°N, at the eastern edge of the Himalayan thrust, the slip vectors again attain the sublatitudinal direc-tion. High velocities/rates of recent crust movements are typical of the Tibet region. (7) The NW direction is typical of the opposite vectors related to the Pacific subduction zone. The resultant of the NE and NW vectors provides for the right-lateral displacement of the rocks in the submeridional border zone. (8) The geodynamic zones around the cen-tral zone (wherein the strong earthquakes are located) are significantly less geodynamically active and thus facilitate the accumulation of compression stresses in the central zone, providing for the transition of rocks to the quazi-plastic state and even flow. This is the principal feature distinguishing the region, wherein the strong earthquakes are loca-ted, from its neighboring areas. In Central Asia, the structural positions of recent strong earthquakes are determined with respect to the following factors: (1) the western regions separated in the studied territory; (2) the larger thickness of the crust in the western regions; (3) strong submeridional compression of the crust and upper lithosphere in combination with shear stresses; (4) high rates of recent crustal movements; and (5) the rheological characteristics of the crust.
About the Authors
S. I. ShermanRussian Federation
Academician of the Russian Academy of Natural Sciences, Doctor of Geology and Mineralogy, Professor, Chief Researcher 128 Lermontov street, Irkutsk 664033, Russia Tel.: (3952)428261
Ma Jin
Russian Federation
Academician of Chinese Academy of Sciences State Key Laboratory of Earthquake Dynamics Hua Yan Li, Chaoyang District, Beijing 100029, China
E. A. Gorbunova
Russian Federation
Candidate of Geology and Mineralogy, Junior Researcher 128 Lermontov street, Irkutsk 664033, Russia
References
1. Anderson J.G., Wesnousky S.G., Stirling M.W., 1996. Earthquake size as a function of fault slip rate. Bulletin of the Seismological Society of America 86 (3), 683–690.
2. Ashurkov S.V., San'kov V.A., Miroshnichenko A.I., Lukhnev A.V., Sorokin A.P., Serov M.A., Byzov L.M., 2011. GPS geodetic constraints on the kinematics of the Amurian Plate. Russian Geology and Geophysics 52 (2), 239–249. http://dx.doi.org/10.1016/j.rgg.2010.12.017.
3. Atlas of Seismotectonics in Central Asia, 2013. Beijing, 129 p
4. Bao X., Xu M., Wang L., Mi N., Yu D., Li H., 2011. Lithospheric structure of the Ordos Block and its boundary areas in-ferred from Rayleigh wave dispersion. Tectonophysics 499 (1), 132–141. http://dx.doi.org/10.1016/j.tecto.2011. 01.002.
5. Burtman V.S., 1990. Tectonic flow processes in the Alpine belt. Izvestiya AN SSSR. Seriya Geologicheskaya (6), 30–39 (in Russian) [Буртман В.С. Процессы тектонического течения в Альпийском поясе // Известия АН СССР. Серия геологическая. 1990. № 6. С. 30–39].
6. Burtman V.S., 2012a. Geodymanics of Tibet, Tarim, and the Tien Shan in the Late Cenozoic. Geotectonics 46 (3), 185–211. http://dx.doi.org/10.1134/S0016852112030028.
7. Burtman V.S., 2012b. Tian Shan and High Asia: Geodynamics in the Cenozoic. GEOS, Moscow, 188 p. (in Russian) [Буртман В.С. Тянь-Шань и Высокая Азия: Геодинамика в кайнозое. М.: ГЕОС, 2012б. 188 с.].
8. Burtman V.S., Molnar P., 1993. Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir. Geological Society of America Special Papers, v. 281, p. 1–76. http://dx.doi.org/10.1130/SPE281-p1.
9. Calais E., Vergnolle M., San'kov V., Lukhnev A., Miroshnitchenko A., Amarjargal S., Déverchère J., 2003. GPS measure-ments of crustal deformation in the Baikal‐Mongolia area (1994–2002): Implications for current kinematics of Asia. Journal of Geophysical Research: Solid Earth 108 (B10), 2501. http://dx.doi.org/10.1029/2002JB002373.
10. Chéry J., Carretier S., Ritz J.F., 2001. Postseismic stress transfer explains time clustering of large earthquakes in Mongo-lia. Earth and Planetary Science Letters 194 (1), 277–286. http://dx.doi.org/10.1016/S0012-821X(01)00552-0.
11. China Earthquake Network Center, 2015. Available from: http://www.csndmc.ac.cn/newweb/index.jsp (last accessed December 4, 2015) (in Chinese).
12. Feng R., Ma Z., Fang J., Wu X., 2007. A developing plate boundary: Tianshan-Baikal active tectonic belt. Earth Science Frontiers 14 (4), 1–17. http://dx.doi.org/10.1016/S1872-5791(07)60027-X.
13. Florensov N.A., Solonenko V.P., 1963. The Goby-Altai Earthquake. Publishing House of the USSR Acad. Sci., Moscow, 392 p. (in Russian) [Гоби-Алтайское землетрясение / Ред. Н.А. Флоренсов, В.П. Солоненко. М.: Изд-во АН СССР, 1963. 392 с.].
14. Gan Weijiun, Xiao Genru, 2013. Present-day crustal motion GPS velocity field of Central Asia. In: Atlas of seismotec-tonics in Central Asia. Beijing, p. 41–43.
15. Gao X.-L., Ma X.-J., Li X.-L., 2010. A surrounding and deep dynamic context of the great triangle-shaped seismic region in the eastern Asia continent. Earth Science Frontiers 17 (4), 33–42.
16. Gatinsky Y.G., Prokhorova T.V., 2014. Superficial and deep structure of Central Asia as example of continental litho-sphere heterogeneity. Universal Journal of Geoscience 2 (2), 43–52. http://dx.doi.org/10.13189/ujg.2014.020202.
17. Gatinsky Y.G., Prokhorova T.V., 2015. Seismic active zones in South Siberia, Russian Far East, and adjacent countries. Russian Journal of Earth Sciences 15 (3), ES3003. http://dx.doi.org/10.2205/2015ES000554.
18. Gatinsky Y.G., Prokhorova T.V., Rundquist D.V., Vladova G.L., 2009. Zones of Catastrophic Earthquakes of Central Asia: Geodynamics and Seismic Energy. Russian Journal of Earth Sciences 11 (1), ES1001. http://dx.doi.org/10.2205/ 2009ES000326.
19. Gatinsky Y.G., Rundquist D.V., 2004. Geodynamics of Eurasia: Plate tectonics and block tectonics. Geotectonics 38 (1), 1–16.
20. Gatinsky Y.G., Rundquist D.V., Cherkasov S.V., 2005a. Geological discontinuity at 102–103° in the Eastern Asia: geologi-cal and metallogenic indicators. In: Tectonics of the Earth's Crust and Mantle. Tectonic Regularities in the Distribu-tion of Mineral Resources. Proceedings of the 28th Tectonic Meeting. GEOS, Moscow, p. 127–130 (in Russian) [Гатинский Ю.Г., Рундквист Д.В., Черкасов С.В. Геораздел 102–103° на Востоке Азии: геологические и ме-таллогенические признаки // Тектоника земной коры и мантии. Тектонические закономерности разме-щения полезных ископаемых: Материалы 28-го Тектонического совещания. М.: ГЕОС, 2005. С. 127–130].
21. Gatinsky Y.G., Rundquist D.V., Tyupkin Y.S., 2005b. Block structures and kinematics of Eastern and Central Asia from GPS data. Geotectonics 39 (5), 333–348.
22. Gatinsky Y.G., Rundquist D.V., Vladova G.L., Prokhorova T.V., Romanyuk T.V., 2008. Block structure and geodynamics of the continental lithosphere at plate margins. Bulletin of Kamchatka Regional Association"Educational-Scientific Center". Earth Sciences Series (1), 32–47 (in Russian) [Гатинский Ю.Г., Рундквист Д.В., Владова Г.Л., Прохорова Т.В., Романюк Т.В. Блоковая структура и геодинамика континентальной литосферы на границах плит // Вестник КРАУНЦ. Серия «Науки о Земле». 2008. № 1. C. 32–47].
23. Gatinsky Y.G., Vladova G.L., Prokhorova T.V., Rundquist D.V., 2011. Geodynamics of Central Asia and prediction of cata-strophic earthquakes. Prostranstvo i Vremya (Space and Time) 3 (5), 124–134 (in Russian) [Гатинский Ю.Г., Вла-дова Г.Л., Прохорова Т.В., Рундквист Д.В. Геодинамика Центральной Азии и прогноз катастрофических зем-летрясений // Пространство и время. 2011. Т. 3. № 5. С. 124–134].
24. Goldin S.V., 2004. Dilatancy, repacking, and earthquakes. Izvestiya, Physics of the Solid Earth 40 (10), 817–832.
25. Gol’din S.V., Seleznev V.S., Emanov A.F., Filina A.G., Emanov A.A., Novikov I.S., Gibsher A.S., Vysotskiy E.M., Agatova A.R., Dyadkov P.G., Fateev A.V., Kashun V.N., Podkorytova V.G., Leskova E.V., Yankaitis V.V., Yarygina M.A., 2003. The Chuya earthquake of 2003 (M=7.5). Vestnik. Earth Sciences Division RAS 1 (21) (in Russian) [Гольдин С.В., Селезнёв В.С., Еманов А.Ф., Филина А.Г., Еманов А.А., Новиков И.С., Гибшер А.С., Высоцкий Е.М., Агатова А.Р., Дядьков П.Г., Фатеев А.В., Кашун В.Н., Подкорытова В.Г., Лескова Е.В., Янкайтис В.В., Ярыгина М.А. Чуйское землетрясение 2003 года (М=7.5) // Вестник Отделения наук о Земле РАН. 2003. № 1 (21)]. Gol'din S.V., Seleznev V.S., Emanov A.F., Filina A.G., Emanov A.A., Novikov I.S., Vysotskii E.M., Fateev A.V., Kolesnikov Yu.I., Podkorytova V.G., Leskova E.V., Yarygina M.A., 2004. The Chuya earthquake and its aftershocks. Doklady Earth Sciences 395 (3), 394–396.
26. Grachev А.F., Kalashnikova I.V., Magnitsky V.A., 1993.Contemporary and recent geodynamics and seismicity of China. Fizika Zemli (10), 3–13 (in Russian) [Грачев А.Ф., Калашникова И.В., Магницкий В.А. Современная и новейшая геодинамика и сейсмичность Китая // Физика Земли. 1993. № 10. С. 3–13].
27. Hu J., Yang H., Xu X., Wen L., Li G., 2012. Lithospheric structure and crust–mantle decoupling in the southeast edge of the Tibetan Plateau. Gondwana Research 22 (3–4), 1060–1067. http://dx.doi.org/10.1016/j.gr.2012.01.003.
28. Kim Y.-S., Choi J.-H., 2007. Fault propagation, displacement and damage zones. In: D. Ankhtsetseg, K.G. Levi, A. Schlupp, M. Ulziibat (Eds), Proceedings of the Conference commemorating the 50th anniversary of the 1957 Gobi-Altay earthquake. Ulaanbaatar, p. 81–86.
29. Kocharyan G.G., Spivak A.A., 2003. Deformation Dynamics of Block-Shaped Rock Massifs. Akademkniga, Moscow, 423 p. (in Russian) [Кочарян Г.Г., Спивак А.А. Динамика деформирования блочных массивов горных пород. М.: ИКЦ «Академкнига», 2003. 423 с.].
30. Komarov Yu.V., Belichenko V.G., Misharina L.A., Petrov P.A., 1978. The Verkhoyano-Birmanskaya junction zone of Cen-tral and East-Asian structures (VEBIRS zone). In: VEBIRS Trans-Asian Continental Zone. East Siberian Division of the Siberian Branch, USSR Acad. Sci., Irkutsk, p. 5–24 (in Russian) [Комаров Ю.В., Беличенко В.Г., Мишарина Л.А., Петров П.А. Верхояно-Бирманская зона сочленения центрально- и восточноазиатских структур (зона ВЕБИРС) // Трансазиатская континентальная зона ВЕБИРС (оперативная информация). Иркутск: Восточ-но-Сибирский филиал СО АН СССР, 1978. С. 5–24].
31. Kopnichev Y.F., Sokolova I.N., 2010. On the correlation between seismicity characteristics and S-wave attenuation in the ring structures that appear before large earthquakes. Journal of Volcanology and Seismology 4 (6), 396–411. http://dx.doi.org/10.1134/S0742046310060047.
32. Kozhevnikov V.M., Seredkina A.I., Solovei O.A., 2014. 3D mantle structure of Central Asia from Rayleigh wave group ve-locity dispersion. Russian Geology and Geophysics 55 (10), 1239–1247. http://dx.doi.org/10.1016/j.rgg.2014. 09.010.
33. Kuchai O.A., Bushenkova N.A., 2009. Earthquake focal mechanisms in Central Asia. Fizicheskaya Mezomekhanika (Physi-cal Mesomechanics) 12 (1), 17–24 (in Russian) [Кучай О.А., Бушенкова Н.А. Механизмы очагов землетрясений Центральной Азии // Физическая мезомеханика. 2009. Т. 12. № 1. С. 17–24].
34. Kuchai O.A., Kozina M.E., 2015. Regional features of seismotectonic deformations in East Asia based on earthquake focal mechanisms and their use for geodynamic zoning. Russian Geology and Geophysics 56 (10), 1491–1499. http://dx.doi.org/10.1016/j.rgg.2015.09.011.
35. Kuzmin Yu.O., 2002. Contemporary anomalous geodynamics of aseismic fault zones. Vestnik. Earth Sciences Division RAS 1 (20), 27 p. (in Russian) [Кузьмин Ю.О. Современная аномальная геодинамика асейсмичных разломных зон // Вестник отделения наук о Земле РАН. 2002. № 1 (20). 27 с.].
36. Kuzmin Yu.O., 2004. Recent Geodynamics of Fault Zones. Izvestiya, Physics of the Solid Earth 40 (10), 868–882.
37. Kuzmin Yu.O., Zhukov V.S., 2004. Recent Geodynamics and Variations of Physical Properties of Rocks. Publishing House of the Moscow State Mining University, Moscow, 262 p. (in Russian) [Кузьмин Ю.О., Жуков В.С. Современная гео-динамика и вариации физических свойств горных пород. М.: Изд-во Московского государственного горно-го университета, 2004. 262 с.].
38. Levi K.G., Sherman S.I., San'kov V.A., 2005. Recent geodynamics of Asia. In: K.G. Levi, S.I. Sherman (Eds.), Topical issues of recent geodynamics of Central Asia. Publishing House of SB RAS, Novosibirsk, p. 253–267 (in Russian) [Леви К.Г., Шерман С.И., Саньков В.А. Современная геодинамика Азии // Актуальные вопросы современной гео-динамики Азии / Ред. К.Г. Леви, С.И. Шерман. Новосибирск: Изд-во СО РАН, 2005. C. 253–267].
39. Levi K.G., Sherman S.I., San’kov V.A., 2009. Recent geodynamics of Asia: Map, principles of its compilation, and geody-namic analysis. Geotectonics 43 (2), 152–165. http://dx.doi.org/10.1134/S001685210902006X.
40. Li C.Y., Wei Z.Y., Ye J.Q., Han Y.B., Zheng W.J., 2010. Amounts and styles of coseismic deformation along the northern segment of surface rupture, of the 2008 Wenchuan Mw 7.9 earthquake, China. Tectonophysics 491 (1), 35–58. http://dx.doi.org/10.1016/j.tecto.2009.09.023.
41. Li S., Mooney W.D., Fan J., 2006. Crustal structure of mainland China from deep seismic sounding data. Tectonophysics 420 (1–2), 239–252. http://dx.doi.org/10.1016/j.tecto.2006.01.026.
42. Li Yanxing, Hu Xikang, Shui Ping, Ge Liangquan, Hudng Cheng, Zhu Wenyao, Hu Xiaogong, 2001. The current crust strain fields in the continent of China and its adjacent areas from GPS measurement results. In: Huang Cheng, Qian Zhi-han (Eds), Asia-Pacific space geodynamics program: Proceedings of the fourth workshop (14–19 May, 2001). Shanghai Scientific and Technical Publishers, Shanghai, p. 113–123.
43. Lombardi A.M., Marzocchi W., 2007. Evidence of clustering and nonstationarity in the time distribution of large worldwide earthquakes. Journal of Geophysical Research 112 (B2), B02303. http://dx.doi.org/10.1029/ 2006JB004568.
44. Ma Xingyuan, 1990. Tectonic processes shown in the lithosphere dynamics map of China. In: N.A. Logachev (Ed.), Geo-dynamics of Intracontinental Mountainous Regions. Nauka, Novosibirsk, p. 341–351 (in Russian) [Ма Си Юань. Тектонические процессы, отраженные на карте динамики литосферы Китая // Геодинамика внутрикон-тинентальных горных областей / Ред. Н.А. Логачев. Новосибирск: Наука. СО РАН, 1990. C. 341–351].
45. Ma Xingyuan et al., 1987. 1:1000000 Scale Lithospheric Dynamics Map of China and Adjacent Seas and Explanatory Notes to supplement Map. Geological Publishing House, Beijing.
46. Makarov V.I., 1977. Recent Tectonic Structure of Central Tien Shan. Nauka, Moscow, 172 p. (in Russian) [Макаров В.И. Новейшая тектоническая структура Центрального Тянь-Шаня. М.: Наука, 1977. 172 с.]
47. Mel’nikova V.I., Radziminovich N.A., 2007. Parameters of seismotectonic deformations of the Earth’s crust in the Baikal Rift Zone based on seismological data. Doklady Earth Sciences 416 (1), 1137–1139. http://dx.doi.org/10.1134/ S1028334X07070355.
48. Niu Y., 2014. Geological understanding of plate tectonics: Basic concepts, illustrations, examples and new perspectives. Global Tectonics and Metallogeny 10 (1), 23–46. http://dx.doi.org/10.1127/gtm/2014/0009.
49. Parfeevets A.V., San'kov V.A., 2006. Stress State of the Earth's Crust and Geodynamics of the Southwestern Part of the Baikal Rift System. Geo Academic Publishing House, Novosibirsk, 151 p. (in Russian) [Парфеевец А.В., Саньков В.А. Напряженное состояние земной коры и геодинамика юго-западной части Байкальской рифтовой системы. Новосибирск: Академическое изд-во «Гео», 2006. 151 c.].
50. Priestley K., Debayle E., McKenzie D., Pilidou S., 2006. Upper mantle structure of eastern Asia from multimode surface waveform tomography. Journal of Geophysical Research 111 (B10), B10304. http://dx.doi.org/10.1029/ 2005JB004082.
51. Priestley K., McKenzie D., 2006. The thermal structure of the lithosphere from shear wave velocities. Earth and Plane-tary Science Letters 244 (1), 285–301. http://dx.doi.org/10.1016/j.epsl.2006.01.008.
52. Royden L.H., 1993. The tectonic expression slab pull at continental convergent boundaries. Tectonics 12 (2), 303–325. http://dx.doi.org/10.1029/92TC02248.
53. Rybin A.K., 2011. Deep Structure and Recent Geodynamics of Central Tien Shan from Magnetotelluric Sounding Results. Nauchnaya Mysl, Moscow, 272 p. (in Russian) [Рыбин A.K. Глубинная структура и современная геоди-намика Центрального Тянь-Шаня по результатам магнитнотеллурического зондирования. М.: Научная мысль, 2011. 272 c.].
54. Sadovsky M.A., Bolkhovitinov L.G., Pisarenko V.F., 1987. Deformation of Geophysical Medium and Seismic Process. Nau-ka, Moscow, 100 p. (in Russian) [Садовский М.А., Болховитинов Л.Г., Писаренко В.Ф. Деформирование геофи-зической среды и сейсмический процесс. М.: Наука, 1987. 100 с.].
55. Sadovsky M.A., Pisarenko V.F., 1991. Seismic Process in Block Medium. Nauka, Moscow, 96 p. (in Russian) [Садов- ский М.А., Писаренко В.Ф. Сейсмический процесс в блоковой среде. М.: Наука, 1991. 96 с.].
56. San’kov V.A., Parfeevets A.V., Lukhnev A.V., Miroshnichenko A.I., Ashurkov S.V., 2011. Late Cenozoic geodynamics and mechanical coupling of crustal and upper mantle deformations in the Mongolia–Siberia mobile area. Geotectonics 45 (5), 378–393. http://dx.doi.org/10.1134/S0016852111050049.
57. Shen Jun, Bai Meixiang, Shi Guangling, 2013. Seismotectonics of the northwestern boundary of strong earthquake con-centration in central Asia. In: Atlas of seismotectonics in Central Asia. Beijining, p. 70–71.
58. Sherman S.I., 1977. Physical Regularities of Faulting in the Earth's Crust. Nauka, Novosibirsk. Наука, 1977, 102 p. (in Russian) [Шерман С.И. Физические закономерности развития разломов земной коры. Новосибирск: Наука, 1977. 102 с.].
59. Sherman S.I., 1978. On VEBIRS meridional zone in the Asian continent and its identification criteria. In: VEBIRS Trans-Asian Continental Zone. East Siberian Division of the Siberian Branch, USSR Acad. Sci., Irkutsk, p. 31–35 (in Rus-sian) [Шерман С.И. О меридиональной зоне ВЕБИРС на Азиатском континенте и критериях ее выделения // Трансазиатская континентальная зона ВЕБИРС (оперативная информация). Иркутск: Восточно-Сибир-ский филиал СО АН СССР, 1978. C. 31–35].
60. Sherman S.I., 2014. Seismic Process and the Forecast of Earthquakes: Tectonophysical Conception. Academic Publi-shing House “Geo”, Novosibirsk, 359 p. (in Russian) [Шерман С.И. Сейсмический процесс и прогноз землетря-сений: тектонофизическая концепция. Новосибирск: Академическое издательство «Гео», 2014. 359 с.].
61. Sherman S.I., Bornyakov S.A., Buddo V.Yu., 1983. Areas of Dynamic Influence of Faults (Modelling Results). Nauka, Novosibirsk, 110 p. (in Russian) [Шерман С.И., Борняков С.А., Буддо В.Ю. Области динамического влияния раз-ломов (результаты моделирования). Новосибирск: Наука. СО АН СССР, 1983. 110 с.].
62. Sherman S.I., Dneprovsky Yu.I., 1989. Crustal Stress Fields and Geological and Structural Methods of Studies. Nauka, Novosibirsk, 157 p. (in Russian) [Шерман С.И., Днепровский Ю.И. Поля напряжений земной коры и геолого-структурные методы их изучения. Новосибирск: Наука, 1989. 157 с.].
63. Sherman S.I., Levi K.G., 1978. Transform faults of the Baikal rift zone and seismicity of its flanks. In: N.A. Logachev (Ed.), Tectonics and Seismicity of Continental Rift Zones. Nauka, Moscow, p. 7–18 (in Russian) [Шерман С.И., Леви К.Г. Трансформные разломы Байкальской рифтовой зоны и сейсмичность ее флангов // Тектоника и сей-смичность континентальных рифтовых зон / Ред. Н.А. Логачев. М.: Наука, 1978. C. 7–18].
64. Sherman S.I., Sorokin A.P., Savitskii V.A., 2005. New methods for the classification of seismoactive lithospheric faults based on the index of seismicity. Doklady Earth Sciences 401 (3), 413–416.
65. Sherman S.I., Zlogodukhova О.G., 2011. Seismic belts and zones of the Earth: formalization of notions, positions in the lithosphere, and structural control. Geodynamics & Tectonophysics 2 (1), 1–34 (in Russian) [Шерман С.И., Злогоду-хова О.Г. Сейсмические пояса и зоны Земли: формализация понятий, положение в литосфере и структур-ный контроль // Геодинамика и тектонофизика. 2011. Т. 2. № 1. С. 1–34]. http://dx.doi.org/10.5800/GT-2011-2-1-0031.
66. Sobolev G.A., 1993. Foundations of Earthquake Prediction. М.: Nauka, Moscow, 314 p. (in Russian) [Соболев Г.А. Осно-вы прогноза землетрясений. М.: Наука, 1993. 314 с.].
67. Sobolev G.A., 2011. The Earthquake Predictability Concept Based on Seismicity Dynamics under Triggering Impact. IPERAS, Moscow, 56 p. (in Russian) [Соболев Г.А. Концепция предсказуемости землетрясений на основе ди-намики сейсмичности при триггерном воздействии. М.: ИФЗ РАН, 2011. 56 с.].
68. Sobolev G.А., Ponomarev V.А., 2003. Physics of Earthquakes and Precursors. Nauka, Moscow, 270 p. (in Russian) [Собо-лев Г.А., Пономарев А.В. Физика землетрясений и предвестники. М.: Наука, 2003. 270 с.].
69. Song Zhiping, Zhang Guoming, Liu Jie et al., 2011. Global Earthquake Catalog (9999 BC – 1963 AD, 1964 AD – 2010 AD, M≥6.0). Seismological Press, Beijing, 450 p. (in Chinese).
70. Trifonov V.G., 1983. Late Quaternary Tectogenesis. Nauka, Moscow, 224 p. (in Russian) [Трифонов В.Г. Позднечет-вертичный тектогенез. М.: Наука, 1983. 224 с.].
71. Trifonov V.G., 1999. Neotectonics of Eurasia. Nauchny Mir, Moscow, 252 p. (in Russian) [Трифонов В.Г. Неотектоника Евразии. М.: Научный мир, 1999. 252 с.].
72. Trifonov V.G., Karakhanyan A.S., 2004. Geodynamics and History of Civilizations. Nauka, Moscow, 668 p. (in Russian) [Трифонов В.Г., Караханян А.С. Геодинамика и история цивилизаций. М.: Наука, 2004. 668 с.].
73. Wang H., Liu M., Cao J., Shen X., Zhang G., 2011. Slip rates and seismic moment deficits on major active faults in main-land China. Journal of Geophysical Research 116 (B2), B02405. http://dx.doi.org/10.1029/2010JB007821.
74. Wang S.-Z., Zhang Z.-C., 2004. Plastic-flow waves (“slow waves”) and seismic activity in central-eastern Asia. Dizhen Dizhi 26 (1), 91–101 (in Chinese).
75. Wen Y.Y., Ma K.F., Song T.R.A., Mooney W.D., 2009. Validation of the rupture properties of the 2001 Kunlun, China (Ms=8.1), earthquake from seismological and geological observations. Geophysical Journal International 177 (2), 555–570. http://dx.doi.org/10.1111/j.1365-246X.2008.04063.x.
76. Yanovskaya T.B., Kozhevnikov V.M., 2003. 3D S-wave velocity pattern in the upper mantle beneath the continent of Asia from Rayleigh wave data. Physics of the Earth and Planetary Interiors 138 (3–4), 263–278. http://dx.doi.org/ 10.1016/S0031-9201(03)00154-7.
77. Zhang P., Deng Q., Zhang G., Ma J., Gan W., Min W., Mao F., Wang Q., 2003. Active tectonic blocks and strong earthquakes in the continent of China. Science in China Series D: Earth Sciences 46 (2), 13–24. http://dx.doi.org/10.1360/ 03dz0002.
78. Zheng Y., Ma H., Lü J., Ni S., Li Y., Wei S., 2009. Source mechanism of strong aftershocks (Ms⩾5.6) of the 2008/05/12 Wenchuan earthquake and the implication for seismotectonics. Science in China Series D: Earth Sciences 52 (6), 739–753. http://dx.doi.org/10.1007/s11430-009-0074-3.
79. Zorin Y.A., Kozhevnikov V.M., Novoselova M.R., Turutanov E.K., 1989. Thickness of the lithosphere beneath the Baikal rift zone and adjacent regions. Tectonophysics 168 (4), 327–337. http://dx.doi.org/10.1016/0040-1951(89)90226-6.
80. Zorin Yu.А., Novoselova M.R., Turutanov Е.Kh., Kozhevnikov V.М., 1990. The lithosphere structure of the Mongolia-Siberian mountainous region. In: N.A. Logachev (Ed.), Geodynamics of Intracontinental Mountainous Regions. Nauka, Novosibirsk, p. 143–154. (in Russian) [Зорин Ю.А., Новоселова М.Р., Турутанов Е.Х., Кожевников В.М. Строение литосферы Монголо-Сибирской горной страны // Геодинамика внутриконтинентальных гор-ных областей / Ред. Н.А. Логачев. Новосибирск: Наука. СО РАН, 1990. C. 143–154].
Review
For citations:
Sherman S.I., Jin M., Gorbunova E.A. RECENT STRONG EARTHQUAKES IN CENTRAL ASIA: REGULAR TECTONOPHYSICAL FEATURES OF LOCATIONS IN THE STRUCTURE AND GEODYNAMICS OF THE LITHOSPHERE. PART 1. MAIN GEODYNAMIC FACTORS PREDETERMINING LOCATIONS OF STRONG EARTHQUAKES IN THE STRUCTURE OF THE LITHOSPHER. Geodynamics & Tectonophysics. 2015;6(4):409-436. (In Russ.) https://doi.org/10.5800/GT-2015-6-4-0188