TECTONOPHYSICAL ZONING OF THE TIEN SHAN ACTIVE FAULTS – DETERMINISTIC STRONG EARTHQUAKE PREDICTION
https://doi.org/10.5800/GT-2025-16-2-0822
EDN: KYJKFM
Abstract
The January 23, 2024 М7.0 Wushi earthquake (China) put an end to the period of strong earthquake quiescence that had lasted for about 33 years in the Tien Shan. The risk of occurrence of new strong earthquakes in the coming years has been discussed among scientists. As a result of the conference on the basis of RS RAS in Bishkek in 2024, a team of the Russian, Kyrgyz, Kazakh and Uzbek seismologists, geophysicists and tectonophysicists has been formed to collaborate on a study of seismic prediction in the Tien Shan to reach a new level of understanding of this problem and to obtain the possibility to solve it. In the last few decades, a large Tien Shan earthquake database has been compiled and catalogued involving not only place, time and intensity of an event but also earthquake focal mechanisms. For the last years, M.V. Gzovsky laboratory of tectonophysics, IPE RAS, dealt with the development of new approaches which allow the stresses, extracted from the seismological database, to be recalculated into the Coulomb stresses on active faults. The recalculation experience showed that the fault zones with high Coulomb stresses can also be distinguished as more intensive seismic regime areas. Those are areas along which there is an occurrence of earthquakes, both moderate to strong and catastrophic (retrospective prediction for the 2008 Wenchuan and 2023 Pazarcik earthquakes). Thus, it becomes possible to perform tectonophysical zoning of faults which can be considered as a long-term earthquake prediction. The joint research program also involves a new level of development of approach to moderate-term earthquake prediction as applied to certain faults.
Keywords
About the Authors
K. E. AbdrakhmatovKyrgyzstan
7-8 Aaly Tokombaeva St, Bishkek 720060
O. M. Beloslyudtsev
Kazakhstan
75a Al-Farabi Ave, Almaty 050060
A. V. Vilyaev
Kazakhstan
Almaty 050020
A. T. Danabaeva
Kazakhstan
75a Al-Farabi Ave, Almaty 050060
T. L. Ibragimova
Uzbekistan
3 Zulfiyahonima St, Tashkent 100128
R. S. Ibragimov
Uzbekistan
3 Zulfiyahonima St, Tashkent 100128
V. A. Ismailov
Uzbekistan
3 Zulfiyahonima St, Tashkent 100128
A. Zh. Zhunusova
Kazakhstan
75a Al-Farabi Ave, Almaty 050060
Z. А. Kalmetyeva
Kyrgyzstan
73-2 Timur Frunze St, Bishkek 720027
S. I. Kuzikov
Kyrgyzstan
Bishkek 720049
A. V. Marinin
Russian Federation
10-1 Bolshaya Gruzinskaya St, Moscow 123242
M. A. Mirzaev
Uzbekistan
3 Zulfiyahonima St, Tashkent 100128
A. M. Muraliyev
Kyrgyzstan
7-8 Aaly Tokombaeva St, Bishkek 720060
Yu. L. Rebetsky
Russian Federation
10-1 Bolshaya Gruzinskaya St, Moscow 123242
N. A. Sycheva
Russian Federation
10-1 Bolshaya Gruzinskaya St, Moscow 123242
G. Ya. Khachikyan
Kazakhstan
75a Al-Farabi Ave, Almaty 050060
R. A. Umurzakov
Uzbekistan
2 Universitetskaya St, Tashkent 100095
References
1. Angelier J., Mechler P., 1977. Sur Une Methode Graphique de Recherche Des Contraintes Principales Egalement Utilisable en Tectonique ET en Seismologie: La Methode Des Diedres Droits. Bulletin de la Société Géologique de France S7-XIX (6), 1309−1318. https://doi.org/10.2113/gssgfbull.S7-XIX.6.1309.
2. Artikov T.U., Ibragimov R.S., Ibragimova T.L., Mirzaev M.A., 2018. Identification of Expected Seismic Activity Areas by Forecasting Complex Seismic-Mode Parameters in Uzbekistan. Geodesy and Geodynamics 9 (2), 121–130. https://doi.org/10.1016/j.geog.2017.11.005.
3. Artikov T.U., Ibragimov R.S., Ibragimova T.L., Mirzaev M.A., Rebetsky Yu.L., 2022. Stress State of the Earth’s Crust, Seismicity, and Prospects for Long-Term Forecast of Strong Earthquakes in Uzbekistan. Russian Geology and Geophysics 63 (12), 1442–1458. https://doi.org/10.2113/RGG20214408.
4. Bachmanov D.M., Kozhurin A.I., Trifonov V.G., 2017. The Active Faults of Eurasia Database. Geodynamics & Tectonophysics 8 (4), 711–736 (in Russian) https://doi.org/10.5800/GT-2017-8-4-0314.
5. Bott M.H.P., 1959. The Mechanics of Oblique Slip Faulting. Geological Magazine 96 (2), 109−117. https://doi.org/10.1017/S0016756800059987.
6. Chen J., Zilio L.D., Zhang H., Yang G., Shi Y., Liu Ch., 2023. Decoding Stress Patterns of the 2023 Turkey-Syria Earthquake Doublet. Preprint (v. 1). Research Square. https://doi.org/10.21203/rs.3.rs-2922091/v1.
7. Delvaux D., Sperner B., 2003. New Aspects of Tectonic Stress Inversion with Reference to the TENSOR Program. In: D. Nieuwland (Ed.), New Insights Into Structural Interpretation and Modelling. Vol. 212. Geological Society of London Special Publications 212, p. 75–100. https://doi.org/10.1144/GSL.SP.2003.212.01.06.
8. Ferrill D., Morris A.P., 2003. Dilational Normal Faults. Journal of Structural Geology 25 (2), 183–196. https://doi.org/10.1016/S0191-8141(02)00029-9.
9. Gamburtsev G.A., 1955. Status and Prospects of Works in the Field of Earthquake Prediction. Bulletin of the Council on Seismology of the USSR Academy of Science 1, 7–16 (in Russian)
10. Ganas A., Sokos E., Agalos A., Leontakianakos G., Pavlides S., 2006. Coulomb Stress Triggering of Earthquakes Along the Atalanti Fault, Central Greece: Two April 1894 M6+ Events and Stress Change Patterns. Tectonophysics 420 (3–4), 357–369. https://doi.org/10.1016/j.tecto.2006.03.028.
11. Gushchenko O.I., Kuznetsov V.A., 1979. Determination of Principal Stress Orientations and Their Ratio Values on the Basis of the Directions of Strike-Slip Tectonic Movements. In: Stress Fields in the Lithosphere. Nauka, Moscow, p. 60−66 (in Russian)
12. Gzovsky M.V., 1956. Formation Mechanism of Large Tectonic Faults. Prospect and Protection of Mineral Resources 7, 1–14 (in Russian)
13. Gzovsky M.V., 1957a. Tectonophysical Substantiation for Geological Criteria of Seismicity. Bulletin of the USSR Academy of Sciences. Geophysical Series 2, 141–160 (in Russian)
14. Gzovsky M.V., 1957b. Tectonophysical Substantiation for Geological Criteria of Seismicity. Bulletin of the USSR Academy of Sciences. Geophysical Series 3, 273–283 (in Russian)
15. Gzovsky M.V., 1963. Using Data on Neo- and Recent Tectonic Movements in New-Type Detailed Seismic Zoning. In: Recent Crustal Movements. Vol. 1. Publishing House of the USSR Academy of Science, Moscow, p. 149–178 (in Russian)
16. Harris R.A., Simpson R.W., Reasenberg P.A., 1995. Influence of Static Stress Changes on Earthquake Locations in Southern California. Nature 375, 221–224. https://doi.org/10.1038/375221a0.
17. Herring T.A., Floyd M.A., King R.W., McClusky S.C., 2018. Global Kalman Filter VLBI and GPS Analysis Program. GLOBK Reference Manual, Release 10.6. MIT, Cambridge, 54 p.
18. Ibragimov R.N., Nurmatov U.O., Ibragimov O.R., 2002. Seismotectonic Method for Assessing Seismic Hazard and Issues of Seismic Zoning. In: Seismic Zoning and Earthquake Forecasting in Uzbekistan. Hydroingeo, Tashkent, p. 59–74 (in Russian)
19. Ibragimov R.S., Ibragimova T.L., Mirzaev M.A., Rebetsky Yu.L., 2023. The Probability of a Strong (M≥6.0) Earthquake in the South Fergana Seismic Activity Zone in the Coming Years. Geodynamics & Tectonophysics 14 (1), 0688 (in Russian) https://doi.org/10.5800/GT-2023-14-1-0688.
20. Ibragimova T.L., Ibragimov R.S., Mirzaev M.A., Rebetsky Yu.L., 2021. The Current Stress of Earth’s Crust in the Territory of Uzbekistan According to Focal Earthquake Mechanisms. Geodynamics & Tectonophysics 12 (3), 435–454 (in Russian) https://doi.org/10.5800/GT-2021-12-3-0532.
21. Kal’meteva Z.A., Mikolaichuk A.V., Moldobekov B.D., Meleshko A.V., Zhantaev M.M., Zubovich A.V., 2009. Earthquakes Atlas of Kyrgyzstan. Central-Asian Institute for Applied Geosciences, Bishkek, 73 p. (in Russian)
22. King G.C., Stein R.S., Lin J., 1994. Static Stress Changes and the Triggering of Earthquakes. Bulletin of the Seismological Society of America 84 (3), 935–953.
23. Kivinen A., Varis K., 2009. Jännitystilamittaukset Hydraulisen Murtuman Menetelmällä Pyhäjoella 2009. Raportti 223/2934 III/09/AK, KV. Suomen Malmi Oy, Espoo, 8 p.
24. Kozhurin A.I., Ponomareva V.V., Pinegina T.K., 2008. Active Faulting in the South of Central Kamchatka. Bulletin of Kamchatka Regional Association "Educational-Scientific Center". Earth Sciences 12 (2), 10–27 (in Russian)
25. Krüger F., Kulikova G., Landgraf A., 2018. Magnitudes for the Historical 1885 (Belovodskoe), the 1887 (Verny) and the 1889 (Chilik) Earthquakes in Central Asia Determined from Magnetogram Recordings. Geophysical Journal International 215 (3), 1824–1840. https://doi.org/10.1093/gji/ggy377.
26. Kuzmin Yu.O., 1999. Modern Geodynamics and Geodynamic Risk Assessment in Subsoil Use. Agency of Economic News, Moscow, 220 p. (in Russian)
27. Kuzmin Yu.O., 2004. Recent Geodynamics of Fault Zones. Izvestiya, Physics of the Solid Earth 40 (10), 868–882.
28. Kuzmin Yu.O., 2005. Hazardous Faults and Emergency Prediction. In: Emergency Prediction Problems. Reports and Presentations of the IV Research and Practice Conference (October 19–20, 2004). MTP INVEST, Moscow, p. 153–163 (in Russian)
29. Kuzmin Yu.O., Zhukov V.S., 2004. Recent Geodynamics and Physical Properties Variations of Rocks. Mining Book, Moscow, 262 p. (in Russian)
30. Landgraf A., Dzhumabaeva A., Abdrakhmatov K.E., Strecker M.R., Macaulay E.A., Arrowsmith J.R., Sudhaus H., Preusser F., Rugel G., Merchel S., 2016. Repeated Large-Magnitude Earthquakes in a Tectonically Active, Low-Strain Continental Interior: The Northern Tien Shan, Kyrgyzstan. Journal of Geophysical Research: Solid Earth 121 (5), 3888–3910. https://doi.org/10.1002/2015JB012714.
31. Mallman E.P., Zoback M.D., 2007. Assessing Elastic Coulomb Stress Transfer Models Using Seismicity Rates in Southern California and Southwestern Japan. Journal of Geophysical Research: Solid Earth 112 (B3). https://doi.org/10.1029/2005JB004076.
32. Melnikov G.F., Strakhov V.N., Ulomov V.I. (Eds), 2000. Seismic Zoning in the Territory of the Russian Federation – GSZ-97, 2000. Scale of 1:8000000. "Tekart-M" R&D Company, Moscow, 4 sheets (in Russian)
33. Morris A.P., Ferrill D.A., Henderson D.B., 1996. Slip Tendency Analysis and Fault Reactivation. Geology 24 (3), 275–278. https://doi.org/10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2.
34. Muraliev A.M., Abdyldaeva F.S., Seitaliev M.M., Berezina A.V., Sabirova G.A., 2023. Development of Seismic Monitoring in Kyrgyzstan. Russian Journal of Seismology 5 (3), 59–66 (in Russian) https://doi.org/10.35540/2686-7907.2023.3.04.
35. New Catalog of Strong Earthquakes in the USSR from Ancient Times to 1975, 1977. Nauka, Moscow, 536 p. (in Russian)
36. Nikolaevsky V.N., 2010a. Geomechanics. Vol. 1. Destruction and Dilatancy. Oil and Gas. ICR, Moscow–Izhevsk, 640 p. (in Russian)
37. Nikolaevsky V.N., 2010b. Geomechanics. Vol. 2. Earth’s Crust. Nonlinear Seismics. Whirlwinds and Hurricanes. ICR, Moscow–Izhevsk, 560 p. (in Russian)
38. Nikolaevsky V.N., 2012. Geomechanics. Vol. 3: Earthquakes and Crustal Evolution. Boreholes and Reservoir Deformations. Gas Condensate. ICR, Moscow–Izhevsk, 644 p. (in Russian)
39. Nikonov A.A., 1995. Active Faults: Definition and Identification Problems. Geoecology 4, 16–27 (in Russian)
40. Okada Y., 1992. Internal Deformation Due to Shear and Tensile Faults in a Half-Space. Bulletin of the Seismological Society of America 82 (2), 1018–1040. https://doi.org/10.1785/BSSA0820021018.
41. Pang Y., 2022. Stress Evolution on Major Faults in Tien Shan and Implications for Seismic Hazard. Journal of Geodynamics 153–154, 101939. https://doi.org/10.1016/j.jog.2022.101939.
42. Pavlenko O.V., Pavlenko V.A., 2023. Rupture Directivity Effects of Large Seismic Sources, Case of February 6th 2023 Catastrophic Earthquakes in Turkey. Izvestiya, Physics of the Solid Earth 59, 912–928. https://doi.org/10.1134/S1069351323060149.
43. Pohjatekniikka FH1.C.T036.002.HG.1001.E, 2018. Technical Report for Engineering Geological Investigations to Develop Design Documents of Hanhikivi-1 NPP. Stage 1. Rev 1. March.
44. Rebetsky Yu.L., 2003. Stress–Strain State and Mechanical Properties of Natural Massifs from Earthquake Focal Mechanisms and Structural-Kinematic Characteristics of Fractures. PhD Thesis (Doctor of Physical and Mathematical Sciences). Moscow, 455 p. (in Russian)
45. Rebetsky Yu.L., 2006. Dilatancy, Pore Fluid Pressure and New Data on the In-Situ Rock Mass Strength. In: Yu.G. Leonov (Ed.), Fluid and Geodynamics. Proceedings of the All-Russia Symposium "Deep-Seated Fluids and Geodynamics" (November 19–21, 2003). Nauka, Moscow, p. 120–146 (in Russian)
46. Rebetsky Yu.L., 2023. Tectonophysical Zoning of Seismogenic Faults in Eastern Anatolia and February 6, 2023 Kahramanmaraş Earthquakes. Izvestiya, Physics of the Solid Earth 59, 851–877. https://doi.org/10.1134/S1069351323060174.
47. Rebetsky Yu.L., Dobrynina A.A., Sankov V.A., 2024. Tectonophysical Zoning of Active Faults of the Baikal Rift System. Geodynamics & Tectonophysics 15 (4), 0775 (in Russian) https://doi.org/10.5800/GT-2024-15-4-0775.
48. Rebetsky Yu.L., Guo Ya., Wang K., Alekseev R.S., Marinin A.V., 2021. Stress State of the Earth’s Crust and Seismotectonics of Western Sichuan, China. Geotectonics 55, 844–863. https://doi.org/10.1134/S0016852121060078.
49. Rebetsky Yu.L., Ibragimova T.L., Ibragimov R.S., Mirzaev M.A., 2020a. Stress State of Uzbekistan’s Seismically Active Areas. Seismic Instruments 56, 679–700, https://doi.org/10.3103/S0747923920060079.
50. Rebetsky Yu.L., Kuzikov S.I., 2016. Active Faults of the Northern Tien Shan: Tectonophysical Zoning of Seismic Risk. Russian Geology and Geophysics 57 (6), 967–983. https://doi.org/10.1016/j.rgg.2016.05.004.
51. Rebetsky Yu.L., Marinin A.V., 2024. Integration of Rebetsky’s and Rastsvetaev’s Methods for Paleostress Reconstructions on the Basis of Fault Structures of Various Genesis. In: Problems of Tectonics and Geodynamics of the Earth’s Crust and Mantle. Proceedings of the LV Tectonic Meeting (January 29 – February 3, 2024). Vol. 2. GEOS, Moscow, p. 122–127 (in Russian)
52. Rebetsky Yu.L., Marinin A.V., Kuzikov S.I., Sycheva N.A., Sychev V.N., 2020b. About Activity of the Fault "Verkhovoy" on Northern Slope of Kyrgyz Range by Results of Tectonophysical Stress Inversion. Bulletin of the National Academy of Sciences of the Kyrgyz Republic 3, 105–113 (in Russian)
53. Rebetsky Yu.L., Marinin A.V., Kuzikov S.I., Sycheva N.A., Sychev V.N., 2020c. Tectonophysical Study of the Verkhovoi Fault Activity on the Northern Slope of the Kyrgiz Ridge. Geodynamics & Tectonophysics 11 (4), 770–784 (in Russian) https://doi.org/10.5800/GT-2020-11-4-0506.
54. Rebetsky Yu.L., Polets A.Yu., 2018. The Method of Cataclastic Analysis of Discontinuous Displacements. In: S. D’Amico (Ed.), Moment Tensor Solutions. A Useful Tool for Seismotectonics. Springer Natural Hazards. Springer, Cham, p. 111–162. https://doi.org/10.1007/978-3-319-77359-9_6.
55. Rebetsky Yu.L., Sim L.A., Marinin A.V., 2017. From Slickenside to Tectonic Stresses. Techniques and Algorithms. GEOS, Moscow, 234 p. (in Russian)
56. Rebetsky Yu.L., Sycheva N.A., 2024. The Stressed State of the Earth’s Crust in the Altai-Sayan Mountain Region: Reconstruction Based on the Modified Algorithms of the Cataclastic Method. Geosystems of Transition Zones 8 (4), 261–276 (in Russian) https://doi.org/10.30730/gtrz.2024.8.4.261-276.
57. Rebetsky Yu.L., Sycheva N.A., Sychev V.N., Kuzikov S.I., Marinin A.V., 2016. The Stress State of the Northern Tien Shan Crust Based on the KNET Seismic Network Data. Russian Geology and Geophysics 57 (3), 387–408. https://doi.org/10.1016/j.rgg.2016.03.003.
58. Smirnov V.B., Petrushov A.A., Mikhailov V.O., 2023. The RTL Anomaly of Seismicity Before the February 6, 2023 Earthquake in Turkey. Izvestiya, Physics of the Solid Earth 59, 929–938. https://doi.org/10.1134/S1069351323060204.
59. Stein R.S., King G.C.P., Lin J., 1992. Change in Failure Stress on the Southern San Andreas Fault System Caused by the 1992 Magnitude = 7.4 Landers Earthquake. Science 258 (5086), 1328–1332. https://doi.org/10.1126/science.258.5086.1328.
60. Sunbul F., 2019. Time-Dependent Stress Increase Along the Major Faults in Eastern Turkey. Journal of Geodynamics 126, 23–31. https://doi.org/10.1016/j.jog.2019.03.001.
61. Tikhotsky S.A., Tatevosyan R.E., Rebetsky Yu.L., Ovsyuchenko A.N., Larkov A.S., 2023. The 2023 Kahramanmaraş Earthquakes in Turkey: Seismic Movements Along Conjugated Faults. Doklady Earth Sciences 511, 703–709. https://doi.org/10.1134/s1028334x23600974.
62. Trifonov V.G., 2001. Active Faults of Earth Crust. Soros Educational Journal 7 (7), 66–74 (in Russian)
63. Trifonov V.G., Soboleva O.V., Trifonov R.V., Vostrikov G.A., 2002. Recent Geodynamics of the Alpine-Himalayan Collision Belt. GEOS, Moscow, 225 p. (in Russian)
64. Ulomov V.I., Shuymilina L.S., 1999. A Set of Maps of the Russian Federation General Seismic Zoning – GSZ-97. Scale 1:8000000. Explanatory Note and a List of Cities and Settlements Located in Seismically Hazardous Areas. United Institute of Physics of the Earth RAS, Moscow, 57 p. (in Russian)
65. Vilayev A.V., Zhantayev Zh.Sh., Bibosinov A.Zh., 2017. Monitoring Crustal Movements in Northern Tianshan Mountain Based on GPS Technology. Geodesy and Geodynamics 8 (3), 155–159. https://doi.org/10.1016/j.geog.2017.03.006.
66. Vvedenskaya A.V., 1969. Investigation of Stresses and Ruptures in Earthquake Foci by the Theory of Dislocations. Nauka, Moscow, 136 p. (in Russian)
67. Wallace R.E., 1951. Geometry of Shearing Stress and Relation to Faulting. The Journal of Geology 59 (2), 118−130. https://doi.org/10.1086/625831.
68. Wallace R.E., 1968. Notes on Stream Channels Offset by the San Andreas Fault, Southern Coast Ranges, California. In: W.R. Dickinson, A. Grantz (Eds), Proceedings of Conference on Geologic Problems of San Andreas Fault System. Vol. 11. Stanford University Publications in Geological Sciences, California, p. 6–20.
69. Zelenin E., Bachmanov D., Garipova S., Trifonov V., Kozhurin A., 2022. The Active Faults of Eurasia Database (AFEAD): The Ontology and Design behind the Continental-Scale Dataset. Earth System Science Data 14 (10), 4489–4503. https://doi.org/10.5194/essd-14-4489-2022.
70.
Review
For citations:
Abdrakhmatov K.E., Beloslyudtsev O.M., Vilyaev A.V., Danabaeva A.T., Ibragimova T.L., Ibragimov R.S., Ismailov V.A., Zhunusova A.Zh., Kalmetyeva Z.А., Kuzikov S.I., Marinin A.V., Mirzaev M.A., Muraliyev A.M., Rebetsky Yu.L., Sycheva N.A., Khachikyan G.Ya., Umurzakov R.A. TECTONOPHYSICAL ZONING OF THE TIEN SHAN ACTIVE FAULTS – DETERMINISTIC STRONG EARTHQUAKE PREDICTION. Geodynamics & Tectonophysics. 2025;16(2):0822. (In Russ.) https://doi.org/10.5800/GT-2025-16-2-0822. EDN: KYJKFM