Preview

Geodynamics & Tectonophysics

Advanced search

ANOMALIES IN THE BEHAVIOR OF COMPONENTS OF THE EARTH’S ELECTROMAGNETIC FIELD AND THEIR RELATIONSHIP TO EARTHQUAKES ACCORDING TO MAGNETOTELLURIC MONITORING DATA

https://doi.org/10.5800/GT-2025-16-2-0819

EDN: WTATOT

Abstract

When studying the relationship between electromagnetic and deformation processes, according to the results of magnetotelluric monitoring, electromagnetic pulses were detected, which may be associated with the earthquakes that occurred. The observations were carried out at two magnetotelluric stationary monitoring points located in the Chu depression (Aksu 42.60911 °N, 74.00833 °E; Chon-Kurchak 42.62828 °N, 74.60671 °E, Northern Tien Shan), on the territory of the Bishkek geodynamic polygon. To identify earthquake responses, the results of instrumental observations of the electromagnetic effects of a strong earthquake and its aftershocks that occurred in northern China on January 22, 2024 with a magnitude in the range of 4.9–6.9, a weaker one with a magnitude of 5.4 (Kyrgyzstan) and a number of powerful remote earthquakes with a magnitude in the range of 5.2–6.6 at a distance of 500–1200 km from the epicenter were analyzed. It is shown that an earthquake with numerous aftershocks located at distances from ~450 km from the registration points is reflected in all recorded parameters, while a weaker earthquake, but located closer, does not manifest itself in one of the horizontal components of the electromagnetic field. The mechanisms of occurrence of seismoelectric signals and mechanical-electromagnetic transformations in the Earth’s crust are considered. The reality of the appearance of electromagnetic precursors of earthquakes and coseismic signals observed in the first tens of seconds or minutes after an earthquake is shown. The results of the research can be used in the development of methods for monitoring seismic activity in potentially dangerous regions.

About the Authors

E. A. Bataleva
Research Station, Russian Academy of Science
Kyrgyzstan

 Bishkek 720049 



V. E. Matiukov
Research Station, Russian Academy of Science
Kyrgyzstan

 Bishkek 720049 



K. S. Nepeina
Research Station, Russian Academy of Science
Kyrgyzstan

 Bishkek 720049 



References

1. Abdrakhmatov K.Ye., Aldazhanov S.A., Hager B.H., Hamburger M.W., Herring T.A., Kalabaev K.B., Makarov V.I., Molnar P. et al., 1996. Relatively Recent Construction of the Tien Shan Inferred from GPS Measurements of Present-Day Crustal Deformation Rates. Nature 384, 450–453. https://doi.org/10.1038/384450a0.

2. Barsukov O.M., Sorokin O.N., 1973. Change in the Apparent Resistance of Rocks in the Garm Seismically Active Region. Bulletin of the USSR Academy of Sciences. Physics of the Earth 10, 100–102 (in Russian)

3. Batalev V.Y., Bataleva E.A., Matyukov V.E., Rybin A.K., 2019. Study of Irreversible Deformations in the Tien Shan Lithosphere Based on Magnetotelluric Data (Methodological Aspect). Bulletin of Kamchatka Regional Association "Educational-Scientific Center". Earth Sciences 42 (2), 42–56 (in Russian) https://doi.org/10.31431/1816-5524-2019-2-42-42-56.

4. Batalev V.Yu., Volykhin A.M., Rybin A.K., Trapeznikov Yu.A., Finyakin V.V., 1993. The Structure of the Crust in the Eastern Part of the Kyrgyz Tien Shan According to MTS and GMTS Data. In: Manifestation of Geodynamic Processes in Geophysical Fields. Nauka, Moscow, p. 96–112 (in Russian)

5. Bataleva E., Nepeina K., 2020. Оn the Relationship of the Extrema of Lunar-Solar Tidal Influences and Seismic Events. E3S Web of Conferences 196, 02022. https://doi.org/10.1051/e3sconf/202019602022.

6. Bataleva E., Rybin A., Matiukov V., 2019. System for Collecting, Processing, Visualization, and Storage of the MTMonitoring Data. Data 4 (3), 99. https://doi.org/10.3390/data4030099.

7. Bataleva E.A., 2016. Correlation Dependences of Electromagnetic and Deformation Parameters. Doklady Earth Sciences 468, 523–526. https://doi.org/10.1134/S1028334X16050184.

8. Bataleva E.A., 2021. Modern Problems and Prospects for the Development of Magnetotelluric Monitoring on the Territory of the Bishkek Geodynamic Test Site. IOP Conference Series: Earth and Environmental Science 867, 012002. https://doi.org/10.1088/1755-1315/867/1/012002.

9. Bataleva E.A., 2022. The Results of Monitoring the Zones of Dynamic Influence of the Fault Structures of the Northern Tien Shan. In: Interexpo GEO-Siberia. Collection of Materials of the XVIII International Scientific Congress. Vol. 2. Iss. 2. P. 332–339 (in Russian) https://doi.org/10.33764/2618-981X-2022-2-2-332-339.

10. Bataleva E.A., Batalev V.Y., Rybin A.K., 2013. On the Question of the Interrelation Between Variations in Crustal Electrical Conductivity and Geodynamical Processes. Izvestiya, Physics of the Solid Earth 49 (3), 402–410. https://doi.org/10.1134/S1069351313030038.

11. Bataleva E.A., Mukhamadeeva V.A., 2018. Complex Electromagnetic Monitoring of Geodynamic Processes in the Northern Tien Shan (Bishkek Geodynamic Test Area). Geodynamics & Tectonophysics 9 (2), 461–487 (in Russian) https://doi.org/10.5800/GT-2018-9-2-0356.

12. Bataleva E.A., Przhiyalgovskii E.S., Batalev V.Yu., Lavrushina E.V., Leonov M.G., Matyukov V.E., Rybin A.K., 2017. New Data on the Deep Structure of the South Kochkor Zone of Concentrated Deformation. Doklady Earth Sciences 475, 930–934. https://doi.org/10.1134/S1028334X1708013X.

13. Bataleva E.A., Rybin A.K., Batalev V.Y., 2014. Variations of Rocks Apparent Resistivity as an Indicator of Stress-Deformed State of the Medium. Geophysical Research 15 (4), 53–64 (in Russian)

14. Bragin V.D., Batalev V.Yu., Zubovich A.V., Rybin A.K., Shchelochkov G.G., 2001. About Qualitative Relations of Modern Moves with an Abyssal Geoelectric Structure of Earth Crust of Central Tien Shan and a Distribution of Seismicity. Journal of Asian Earth Sciences 19 (3A), 7.

15. Bragin V.D., Mukhamadeeva V.A., 2009. Study of Variations in the Anisotropy of Electrical Resistance in the Crust at the Bishkek Geodynamic Test Area. In: Geodynamics of Intracontinental Orogens and Geoecological Problems. Materials of the Fourth International Symposium (June 15–20, 2008). Iss. 4. Moscow–Bishkek, p. 74–84 (in Russian)

16. Bragin V.D., Velikhov E.P., Volikhin A.M., Zeigarnik V.A., Koshkin N.A., Trapeznikov Y.A., Tchelochkov G.G., 1990. Electro-Magnetic Studies in the Test-Field at Frunze. I. On the Relationship Between Resistivity Variations, Deformation Processes and Earthquakes. Acta Geodaetica et Geophysica Hungarica 25 (3–4), 443–451.

17. Bragin V.D., Volykhin A.M., Trapeznikov Yu.A., 1992. Electrical Resistivity Variations and Moderate Earthquakes. Tectonophysics 202 (2–4), 233–238. https://doi.org/10.1016/0040-1951(92)90107-H.

18. Gubatenko V.P., Ogadzhanov V.A., Nazarov A.A., 2000. Monitoring the Rock Decompaction Dynamics by Electrical Prospecting Methods. Izvestiya, Physics of the Solid Earth 36 (9), 799–805.

19. Guglielmi A.V., Zotov O.D., Zavyalov A.D., Klain B.I., 2022. On the Fundamental Laws of Earthquake Physics. Journal of Volcanology and Seismology 16, 143–149. https://doi.org/10.1134/S0742046322020026.

20. Ibragimov R.S., Ibragimova T.L., Mirzaev M.A., Rebetsky Yu.L., 2023. The Probability of a Strong (M≥6.0) Earthquake in the South Fergana Seismic Activity Zone in the Coming Years. Geodynamics & Tectonophysics 14 (1), 0688 (in Russian) https://doi.org/10.5800/GT-2023-14-1-0688.

21. Lutikov A.I., Dontsova G.Yu., Likhodeev D.V., Rogozhin E.A., 2021. The Strong March 25, 2020 Earthquake East of the Northern Kuril Islands. Seismic Instruments 57, 276–286. https://doi.org/10.3103/S0747923921030099.

22. Makarov V.I., Alekseev D.V., Leonov M.G., Batalev V.Y., Bataleva E.A., Bragin V.D., Rybin A.K., Shchelochkov G.G. et al., 2010. Underthrusting of Tarim Beneath the Tien Shan and Deep Structure of Their Junction Zone: Main Results of Seismic Experiment Along Manas Profile Kashgar-Song-Köl. Geotectonics 44, 102–126. https://doi.org/10.1134/S0016852110020020.

23. Nepeina K., Bataleva E., 2022. Evaluation of Hypocenters Distribution Based on the Geoelectric Models in the Tien Shan Earthquake-Prone Areas. In: A. Kosterov, N. Bobrov, E. Gordeev, E. Kulakov, E. Lyskova, I. Mironova (Eds), Problems of Geocosmos-2020. Proceedings of the XIII Conference and School. Springer, p. 309–316. https://doi.org/10.1007/978-3-030-91467-7_22.

24. Nepeina K., Bataleva E., Alexandrov P., 2023. Electromagnetic Monitoring of Modern Geodynamic Processes: An Approach for Micro-Inhomogeneous Rock Through Effective Parameters. Applied Sciences 13 (14), 8063. https://doi.org/10.3390/app13148063.

25. Nevedrova N.N., Epov M.I., 2012. Electromagnetic Monitoring in Seismically Active Regions of Siberia. Geophysical Journal 34 (4), 209–223 (in Russian)

26. Nevedrova N.N., Sanchaa A.M., Shalaginov A.E., Babushkin S.M., 2019. Electromagnetic Monitoring in the Region of Seismic Activization (on the Gorny Altai (Russia) Example). Geodesy and Geodynamics. 10 (6), 460–470, https://doi.org/10.1016/j.geog.2019.06.001.

27. Nigmatullin R.R., Bataleva E.A., Nepeina K.S., Matiukov V.E., 2023. Quality Control of the Initial Magnetotelluric Data: Analysis of Calibration Curves Using a Fitting Function Represented by the Ratio of 4th-Order Polynomials. Measurement 216, 112914. https://doi.org/10.1016/j.measurement.2023.112914.

28. Novikov I.S., Emanov A.A., Leskova E.V., Batalev V.Yu., Rybin A.K., Bataleva E.A., 2008. The System of Neotectonic Faults in Southeastern Altai: Orientations and Geometry of Motion. Russian Geology and Geophysics 49 (11), 859–867. https://doi.org/10.1016/j.rgg.2008.04.005.

29. Przhiyalgovskii E.S., Lavrushina E.V., Batalev V.Yu., Bataleva E.A., Leonov M.G., Rybin A.K., 2018. Structure of the Basement Surface and Sediments in the Kochkor Basin (Tien Shan): Geological and Geophysical Evidence. Russian Geology and Geophysics 59 (4), 335–350. https://doi.org/10.1016/j.rgg.2017.09.003.

30. Rybin A., Bataleva E., Nepeina K., 2023. Deep Structure and Dynamics of the Issyk-Ata Fault (Northern Tien Shan). In: A. Kosterov, E. Lyskova, I. Mironova, S. Apatenkov, S. Baranov (Eds), Problems of Geocosmos-2022. Proceedings of the XIV Conference and School. Springer, p. 213–226. https://doi.org/10.1007/978-3-031-40728-4_15.

31. Rybin A., Bataleva E., Nepeina K., Matiukov V., Alexandrov P., Kaznacheev P., 2020. Response of Cracking Processes in Variations of Geophysical Fields. Journal of Applied Geophysics 181, 104144. https://doi.org/10.1016/j.jappgeo.2020.104144.

32. Rybin A.K., 2011. Deep Structure and Recent Geodynamics of the Central Tien Shan by Magnetotelluric Research Results. Nauchny Mir, Moscow, 232 p. (in Russian)

33. Rybin A.K., Batalev V.Yu., Bataleva E.A., Makarov V.I., Safronov I.V., 2005. Structure of the Earth Crust by Magnetotelluric Soundings. In: N.P. Laverov, V.I. Makarov (Eds), Recent Geodynamics of Intracontinental Areas of Collision Mountain Building (Central Asia). Nauchny Mir, Moscow, p. 79–96 (in Russian)

34. Rybin A.K., Leonov M.G., Przhiyalgovskii E.S., Batalev V.Yu., Bataleva E.A., Bragin V.D., Morozov Yu.A., Schelochkov G.G., 2016. Nature of Electric Conductive Layers of the Upper Crust and Infrastructure of Granites of the Central Tien Shan. Doklady Earth Sciences 470, 968–971. https://doi.org/10.1134/S1028334X16090142.

35. Rybin A.K., Spichak V.V., Batalev V.Yu., Bataleva E.A., Matyukov V.E., 2008. Array Magnetotelluric Soundings in the Active Seismic Area of Northern Tien Shan. Russian Geology and Geophysics 49 (5), 337–349. https://doi.org/10.1016/j.rgg.2007.09.014.

36. Safronov I.V., Zeygarnik V.A., Shchelochkov G.G., Rybin A.K., Batalev V.Yu., Bataleva E.A., Fox L., Ingerov A., Feldman I.S., 2004. Some Aspects of Continuous Magnetotelluric Observations in the North Tien Shan Seismogenerating Zone. In: Physical, Geophysical and Geodynamical Studies in Central Asia at the Beginning of the 21st Century. KRSU, Bishkek, p. 16–21 (in Russian)

37. Sass P., Ritter O., Ratschbacher L., Tympel J., Matiukov V.E., Rybin A.K., Batalev V.Yu., 2014. Resistivity Structure Underneath the Pamir and Southern Tian Shan. Geophysical Journal International 198 (1), 564–579. https://doi.org/10.1093/gji/ggu146.

38. Shalaginov A.E., Nevedrova N.N., 2023. Electromagnetic Monitoring During the Aftershock Period of the 2003 Chuya Earthquake in the Mountain (Gorny) Altai: Measurement Methodology, Results. Geodynamics & Tectonophysics 14 (4), 0714 (in Russian)

39. Sidorin A.Ya., 1992. Earthquake Precursors. Nauka, Moscow, 190 p. (in Russian)

40. Silva R., Franca G.S., Vilar C.S., Alcanis J.S., 2006. Nonextensive Models for Earthquakes. Physical Review E 73 (2), 026102. https://doi.org/10.1103/PhysRevE.73.026102.

41. Sobolev G.A., Ponomarev A.V., 2003. Physics of Earthquakes and Precursors. Nauka, Moscow, 270 p. (in Russian) [Соболев Г.А., Пономарев А.В. Физика землетрясений и предвестники. М.: Наука, 2003. 270 с.].

42. Stanica D., Stanica M., 2007. Electromagnetic Monitoring in Geodynamic Active Areas. Acta Geodynamica et Geomaterialia 4 (1), 99–107.

43. Surkov V.V., 2000. Electromagnetic Effects of Explosions and Earthquakes. MIFI, Moscow, 448 p. (in Russian) [Сурков В.В. Электромагнитные эффекты при землетрясениях и взрывах. М.: МИФИ, 2000. 448 с.].

44. Telesca L., 2012. Maximum Likelihood Estimation of the Nonextensive Parameters of the Earthquake Cumulative Magnitude Distribution. Bulletin of the Seismological Society of America 102 (2), 886–891. https://doi.org/10.1785/0120110093.

45. Thompson S.C., Weldon R.J., Rubin C.M., Abdrakhmatov K., Molnar P., Berger G.W., 2002. Late Quaternary Slip Rates Across the Central Tien Shan, Kyrgyzstan, Central Asia. Journal of Geophysical Research: Solid Earth 107 (B9), 2203. https://doi.org/10.1029/2001JB000596.

46. Vladov V.L., Sudakova M.S., 2017. GPR. From Physical Fundamentals to Promising Areas. Textbook. GEOS, Moscow, 240 p. (in Russian)

47. Volikhin A.M., Bragin V.D., Zubovich A.V., Koshkin N.A., Trapeznikov Yu.A., 1993. The Manifestation of Geodynamic Processes in Geophysical Fields. Nauka, Moscow, 158 p. (in Russian)

48. Zavyalov A.D., 2006. Medium-Term Earthquake Forecast: Basics, Methodology, Implementation. Nauka, Moscow, 242 p. (in Russian)

49. Zavyalov A.D., Guglielmi A.V., Zotov O.D., 2020. Three Problems in Aftershock Physics. Journal of Volcanology and Seismology 14, 341–352. https://doi.org/10.1134/S0742046320050073.

50. Zhu F.C., Ai C.C., Liu B.X., Tian F.L., 2016. Study on Load/Unload Response Ratio of Brittle Rocks under Different Stress Paths. Metal Mine 45 (4), 52–57 (in Chinese).

51. Zilio D.L., Ampuero J.-P., 2023. Earthquake Doublet in Turkey and Syria. Communications Earth & Environment 4, 71. https://doi.org/10.1038/s43247-023-00747-z.

52. Zubovich A.V., Schelochkov G.G., Mosienko O.I., Kuzikov S.I., Bragin V.D., Reigber C., Michajljow W., Wang X.-Q. et al., 2010. GPS Velocity Field for the Tien Shan and Surrounding Regions. Tectonics 29 (6), TC6014. https://doi.org/10.1029/2010TC002772.

53. Zubovich A.V., Trapeznikov Yu.A., Bragin B.D., Mosienko O.I., Shchelochkov G.G., Rybin A.K., Batalev V.Yu., 2001. Deformation Field, Deep Structure of the Crust, and Spatial Seismicity Distribution in the Tien Shan. Russian Geology and Geophysics 42 (10), 1634–1640 (in Russian)


Supplementary files

Review

For citations:


Bataleva E.A., Matiukov V.E., Nepeina K.S. ANOMALIES IN THE BEHAVIOR OF COMPONENTS OF THE EARTH’S ELECTROMAGNETIC FIELD AND THEIR RELATIONSHIP TO EARTHQUAKES ACCORDING TO MAGNETOTELLURIC MONITORING DATA. Geodynamics & Tectonophysics. 2025;16(2):0819. (In Russ.) https://doi.org/10.5800/GT-2025-16-2-0819. EDN: WTATOT

Views: 183


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)