Preview

Geodynamics & Tectonophysics

Advanced search

Dike Complexes in the Eastern Part of the Kaakhem Magmatic Area (Eastern Tuva): Composition, Age, Geological Position

https://doi.org/10.5800/GT-2024-15-3-0760

EDN: VDLNWD

Abstract

This paper presents the results of isotope-geochronological and petrological studies of gabbroic and combined diorite-granite dikes located in the eastern part of the Kaakhem magmatic area. Both groups of dikes cut through diorite-tonalite-plagiogranite associations of different ages (489±5 and 476±4 Ma). Zircons from granitoid of mingling dikes have an age of 477±3 Ma (LA-ICP-MS). The age of the gabbroic dikes was determined by LA-ICP-MS (zircon) and Ar-Ar (amphibole) methods and is 454±10 and 450±6.3 Ma, respectively. Similar contents of major and trace elements in basic and intermediate rocks of dikes indicate their formation from a single source with subduction characteristics. The salic rocks of the combined dikes vary in composition and are close to the heterogeneous diorite-tonalite-plagiogranite-granite associations of the host rocks. The formation of dike complexes occurred at the collisional stage of development of the Kaakhem magmatic area and is associated with the development of local extension zones.

About the Authors

V. A. Yakovlev
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
Russian Federation

3 Academician Koptyug Ave, Novosibirsk 630090



I. V. Karmysheva
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
Russian Federation

3 Academician Koptyug Ave, Novosibirsk 630090



S. N. Rudnev
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
Russian Federation

3 Academician Koptyug Ave, Novosibirsk 630090



D. V. Semenova
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
Russian Federation

3 Academician Koptyug Ave, Novosibirsk 630090



D. S. Yudin
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
Russian Federation

3 Academician Koptyug Ave, Novosibirsk 630090



References

1. Allen E., Boger D., 1988. The Influence of Rheological Properties on Mobility Control in Polymer-Augmented Wa­terflooding. In: Proceedings of SPE Annual Technical Con­ference and Exhibition (October 2–5, 1988, Houston, Texas). Society of Petroleum Engineers, SPE-18097-MS. https://doi.org/10.2118/18097-ms.

2. Andersen T., 2002. Correction of Common Lead in U-Pb Analyses That Do Not Report 204Pb. Chemical Geology 192 (1–2), 59–79. https://doi.org/10.1016/S0009-2541(02)00195-X.

3. Barbarin B., 2005. Mafic Magmatic Enclaves and Mafic Rocks Associated with Some Granitoids of the Central Sierra Nevada Batholith, California: Nature, Origin, and Relations with the Hosts. Lithos 80 (1–4), 155–177. https://doi.org/10.1016/j.lithos.2004.05.010.

4. Bourdon E., Eissen J.-P., Monzier M., Robin C., Martin H., Cotten J., Hall M.L., 2002. Adakite-Like Lavas from Antisana Volcano (Ecuador): Evidence for Slab Melt Metasomatism beneath Andean Northern Volcanic Zone. Journal of Petrol­ogy 43 (2), 199–217. https://doi.org/10.1093/petrology/43.2.199.

5. Chappell B.W., White A.J.R., 2001. Two Contrasting Gran­ite Types: 25 Years Later. Australian Journal of Earth Sci­ences 48 (4), 489–499. https://doi.org/10.1046/j.1440-0952.2001.00882.x.

6. Class C., Miller D.M., Goldstein S.L., Langmuir C.H., 2000. Distinguishing Melt and fluid Subduction Components in Umnak Volcanics, Aleutian Arc. Geochemistry, Geophysics, Geosystems 1 (6), 1004. https://doi.org/10.1029/1999GC000010.

7. Cui X., Sun M., Zhao G., Zhang Y., 2021. Origin of Permian Mafic Intrusions in Southern Chinese Altai, Central Asian Orogenic Belt: A Post-Collisional Extension System Trig­gered by Slab Break-Off. Lithos 390–391, 106112. https://doi.org/10.1016/j.lithos.2021.106112.

8. Defant M.J., Jackson T.E., Drummond M.S., De Boer J.Z., Bellon H., Feigenson M.D., Maury R.S., Stewart R.H., 1992. The Geochemistry of Young Volcanism throughout Western Panama and Southeastern Costa Rica: An Overview. Journal of the Geological Society 149 (4), 569–579. https://doi.org/10.1144/gsjgs.149.4.0569.

9. Defant M.J., Kepezhinskas P., 2001. Adakites: A Review of Slab Melting over the Past Decade and the Case for a Slab-Melt Component in Arcs. Eos Transactions American Geophysical Union 82, 68–69.

10. Ernst R.E., 2014. Large Igneous Provinces. Cambridge University Press, London, 653 p. https://doi.org/10.1017/CBO9781139025300.

11. Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology 42 (11), 2033–2048. https://doi.org/10.1093/PETROLOGY/42.11.2033.

12. Furman T., Spera F.J., 1985. Co-Mingling of Acid and Ba­sic Magma with Implications for the Origin of Mafic I-Type Xenoliths: Field and Petrochemical Relations of an Unusual Dike Complex at Eagle Lake, Sequoia National Park, California, U.S.A. Journal of Volcanology and Geothermal Research 24 (1–2), 151–178. https://doi.org/10.1016/0377-0273(85)90031-9.

13. Gladkochub D.P., Donskaya T.V., Mazukabzov A.M., Sta­nevich A.M., Sklyarov E.V., Ponomarchuk V.A., 2007. Sig­nature of Precambrian Extension Events in the Southern Siberian Craton. Russian Geology and Geophysics 48 (1), 17–31. https://doi.org/10.1016/j.rgg.2006.12.001.

14. Griffin W.L., Powell W.J., Pearson N.J., O’Reilly S.Y., 2008. GLITTER: Data Reduction Software for Laser Ablation ICP-MS. In: P.J. Sylvester (Ed.), Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course Series. Vol. 40. Vancouver, p. 308–311.

15. Hibbard M.J., 1991. Textural Anatomy of Twelve Mag­ma-Mixed Granitoid Systems. In: J. Didier, B. Barbarin (Eds), Enclaves and Granite Petrology. Elsevier, Amsterdam, p. 431–444.

16. Hofmann A.W., 2007. Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. Treatise on Geochemistry 2, 1–44. https://doi.org/10.1016/B0-08-043751-6/02123-X.

17. Hofmann A.W., Jochum K.P., Seufert M., White W.M., 1986. Nb and Pb in Oceanic Basalts: New Constraints on Mantle Evolution. Earth and Planetary Science Letters 79 (1–2), 33–45. https://doi.org/10.1016/0012-821X(86)90038-5.

18. Jing Y., Ge W., Santosh M., Dong Y., Yang H., Ji Z., Bi J., Zhou H., Xing D., 2022. Generation of Nb-Enriched Mafic Rocks and Associated Adakitic Rocks from the Southeastern Central Asian Orogenic Belt: Evidence of Crust-Mantle Interaction. Geoscience Frontiers 13 (2), 101341. https://doi.org/10.1016/j.gsf.2021.101341.

19. Кармышева И.В., Яковлев В.А., Руднев С.Н., Семено­ва Д.В., Сугоракова А.М. Палеозойский контрастный магматизм восточной части Каахемского магматического ареала (Восточная Тува) // Геодинамическая эво­люция литосферы Центрально-Азиатского подвижно­го пояса (от океана к континенту): Материалы науч­ного совещания (18–21 октября 2022 г.). Иркутск: ИЗК СО РАН, 2022. Вып. 20. С. 124–125.

20. Kelemen P.B., Hanghøj K., Greene A.R., 2007. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Treatise on Geochemistry 3, 1–70. https://doi.org/10.1016/B0-08-043751-6/03035-8.

21. Kepezhinskas P., Defant M.J., Drummond M.S., 1996. Progressive Enrichment of Island Arc Mantle by Melt-Peri­dotite Interaction Inferred from Kamchatka Xenoliths. Geo­chimica et Cosmochimica Acta 60 (7), 1217–1229. https://doi.org/10.1016/0016-7037(96)00001-4.

22. Kozakov I.K., Kovach V.P., Yarmolyuk V.V., Kotov A.B., Sal­nikova E.B., Zagornaya N.Yu., 2003. Crust-Forming Pro­cesses in the Geologic Development of the Tuva–Mongolia Massif: Sm-Nd Isotopic and Geochemical Data for Gran­itoids. Petrology 11 (5), 444–463.

23. Kozakov I.K., Sal’nikova E.B., Kotov A.B., Kovalenko V.I., Lebedev V.I., Sugorakova A.M., Yakovleva S.Z., 1998. The Age of Postcollisional Magmatism in the Early Caledonides of Central Asia, with the Tuva Region as an Example. Doklady Earth Sciences 360 (4), 510–513.

24. Ludwig K.R., 2003. ISOPLOT/Ex: A Geochronological Toolkit for Microsoft Excel. Version 3.00. Berkeley Geochro­nology Center Special Publication 4, 74 p.

25. McLeod G.W., Dempster T.J., Faithfull J.W., 2011. Deci­phering Magma-Mixing Processes Using Zoned Titanite from the Ross of Mull Granite, Scotland. Journal of Petrol­ogy 52 (1), 55–82. https://doi.org/10.1093/petrology/egq071.

26. Middlemost E.A.K., 1994. Naming Materials in the Mag­ma/Igneous Rock System. Earth-Science Reviews 37 (3–­4), 215–224. https://doi.org/10.1016/0012-8252(94)90029-9.

27. Mongush A.A., Sugorakova A.M., 2013. Age and Magma Sources of the Post-Collisional Gabbroids of the Kaakhem Magmatic Area, Eastern Tuva: First 40Ar/39Ar and Sm-Nd Data. Geochemistry International 51, 939–943. https://doi.org/10.1134/S0016702913110049.

28. Morozov Y.A., Galybin A.N., Mukhamediev S.A., Smul’­skaya A.I., 2017. Tectonic and Geomechanical Control of Dikes and Sill-Like Bodes: Evidence from the North-Western Part of the Kola Peninsula. Geotectonics 51, 230–258. https://doi.org/10.1134/S0016852117030074.

29. Pearce J.A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos 100 (1–4), 14–48. https://doi.org/10.1016/J.LITHOS.2007.06.016.

30. Peccerillo A., Taylor S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrol­ogy 58, 63–81. https://doi.org/10.1007/BF00384745.

31. Perugini D., De Campos C.P., Dingwell D.B., Petrelli M., Poli G., 2008. Trace Element Mobility during Magma Mixing: Preliminary Experimental Results. Chemical Geology 256 (3–4), 146–157. https://doi.org/10.1016/j.chemgeo.2008.06.032.

32. Polyansky O.P., Prokopiev A.V., Koroleva O.V., Tomshin M.D., Reverdatto V.V., Babichev A.V., Sverdlova V.G., Vasiliev D.A., 2018. The Nature of the Heat Source of Mafic Magmatism during the Formation of the Vilyui Raft Based on the Ages of Dike Swarms and Results of Numerical Modeling. Russian Geology and Geophysics 59 (10), 1217–1236. https://doi.org/10.1016/j.rgg.2018.09.003.

33. Reagan M.K., Gill J.B., 1989. Coexisting Calcalkaline and High-Niobium Basalts from Turrialba Volcano, Costa Rica: Implications for Residual Titanates in Arc Magma Sources. Journal of Geophysical Research: Solid Earth 94 (В4), 4619–4633. https://doi.org/10.1029/JB094iB04p04619.

34. Rudnev S.N., 2013. Early Paleozoic Granitoid Magma­tism in the Altai-Sayan Folded Area and the Lake Zone in Western Mongolia. SB RAS Publishing House, Novosibirsk, 300 p. (in Russian) [Руднев С.Н. Раннепалеозойский гра­нитоидный магматизм Алтае-Саянской складчатой об­ласти и Озерной зоны Западной Монголии. Новоси­бирск: Изд-во СО РАН, 2013. 300 с.].

35. Rudnev S.N., Karmysheva I.V., Semenova D.V., Yakov­lev V.A., Sugorakova A.M., 2023. Magmatic and Xenogenic Zircons from Granitoids of the Kaa-Khem Batholith as Age Markers of the Crust in the Junction Zone of the Tannu-Ola Island Arc and the Tuva–Mongolian Microcontinent (Eastern Tuva). Russian Geology and Geophysics 64 (7), 763–776. https://doi.org/10.2113/RGG20234527.

36. Rudnev S.N., Kiseleva V., Serov P.A., 2015. Vendian–Early Paleozoic Granitoid Magmatism in Eastern Tuva. Russian Geology and Geophysics 56 (9), 1232–1255. https://doi.org/10.1016/j.rgg.2015.08.002.

37. Rudnev S.N., Mal’kovets V.G., Turkina O.M., Semenova D.V., Belousova E.A., 2020. Lu-Hf Isotope Composition of Zircon and Magma Sources of the Vendian–Early Paleozoic Gran­itoids in Tuva (by the Example of the Kaa-Khem and East Tannu-Ola Batholiths). Russian Geology and Geophysics 61 (10), 1088–1108. https://doi.org/10.15372/RGG2019132.

38. Руднев С.Н., Владимиров А.Г., Пономарчук В.А., Бибикова Е.В., Серге­ев С.А., Матуков Д.И., Плоткина Ю.В., Баянова Т.Б. Каа­хемский полихронный гранитоидный батолит (В. Тува): состав, возрасты, источники и геодинамическая пози­ция // Литосфера. 2006. № 2. С. 3–33.

39. Rudnick R.L., Gao S., 2003. Composition of the Conti­nental Crust. Treatise on Geochemistry 3, 1–64. https://doi.org/10.1016/B0-08-043751-6/03016-4.

40. Sajona F.G., Bellon H., Maury R.C., Pubellier M., Cotten J., Rangin C., 1994. Magmatic Response to Abrupt Changes in Geodynamic Settings: Pliocene – Quaternary Calc-Alkaline and Nb-Enriched Lavas from Mindanao (Philippines). Tec­tonophysics 237 (1–2), 47–72. https://doi.org/10.1016/0040-1951(94)90158-9.

41. Sláma J., Košler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A. et al., 2008. Ple­šovice Zircon – A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology 249 (1–2), 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005.

42. Сугоракова А.М., Хертек А.К. Новые дан­ные к вопросу о возрасте Каахемского магматическо­го ареала (Восточная Тува) // Геосферные исследова­ния. 2017. № 3. С. 50–60. https://doi.org/10.17223/25421379/4/7.

43. Sun S.-S., McDonough W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications 42 (1), 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.

44. Ubide T., Galé C., Larrea P., Arranz E., Lago M., Tierz P., 2014. The Relevance of Crystal Transfer to Magma Mixing: A Case Study in Composite Dykes from the Central Pyrenees. Journal of Petrology 55 (8), 1535–1559. https://doi.org/10.1093/petrology/egu033.

45. Vladimirov V.G., Yakovlev V.A., Karmysheva I.V., 2019. Mechanisms of Magmatic Mingling in Composite Dykes: Models of Dispersion and Shear Dilatation. Geodynamics & Tectonophysics 10 (2), 325–345 (in Russian) https://doi.org/10.5800/GT-2019-10-2-0417.

46. Wang Q., Wyman D.A., Xu J., Wan Y., Li C., Zi F., Jiang Z., Qiu H., Chu Z., Zhao Z., Dong Y., 2007. Triassic Nb-Enriched Basalts, Magnesian Andesites, and Adakites of the Qiangtang Terrane (Central Tibet): Evidence for Metasomatism by Slab-Derived Melts in the Mantle Wedge. Contributions to Mineralogy and Petrology 155, 473–490. https://doi.org/10.1007/s00410-007-0253-1.

47. Wang Q., Wyman D.A., Zhao Z.-H., Xu J.-F., Bai Z.-H., Xiong X.-L., Dai T.-M., Li C.-F., Chu Z.-Y., 2009. Petrogenesis of Carboniferous Adakites and Nb-Enriched Arc Basalts in the Alataw Area, Northern Tianshan Range (Western China): Implications for Phanerozoic Crustal Growth in the Central Asia Orogenic Belt. Chemical Geology 236 (1–2), 42–64. https://doi.org/10.1016/J.CHEMGEO.2006.08.013.

48. Whalen J.B., Currie K.L., Chappell B.W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology 95, 407–419. https://doi.org/10.1007/BF00402202.

49. Wyman D.A., Ayer J.A., Devaney J.R., 2000. Niobium-En­riched Basalts from the Wabigoon Subprovince, Canada: Evidence for Adakitic Metasomatism above an Archean Subduction Zone. Earth and Planetary Science Letters 179 (1), 21–30. https://doi.org/10.1016/S0012-821X(00)00106-0.

50. Xu J.-F., Shinjo R., Defant M.J., Wang Q., Rapp R.P., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust? Geology 30 (12), 1111–1114. https://doi.org/10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2.

51. Yakovlev V.A., Karmysheva I.V., Vladimirov V.G., Seme­nova D.V., 2024. Geological Position, Sources, and Age of Mingling Dikes of the Northwestern Margin of the Tuva–Mongolian Massif in Western Sangilen, Southeastern Tuva. Russian Geology and Geophysics 65 (2), 214–232. https://doi.org/10.2113/RGG20234589.

52. Yudin D., Murzintsev N., Travin A., Alifirova T., Zhimu­lev E., Novikova S., 2021. Studying the Stability of the K/Ar Isotopic System of Phlogopites in Conditions of High T, P: 40Ar/39Ar Dating, Laboratory Experiment, Numerical Simu­lation. Minerals 11 (2), 192. https://doi.org/10.3390/MIN11020192.

53. Zhang L., Li S., Zhao Q., 2021. A Review of Research on Adakites. International Geology Review 63 (1), 47–64. https://doi.org/10.1080/00206814.2019.1702592.


Review

For citations:


Yakovlev V.A., Karmysheva I.V., Rudnev S.N., Semenova D.V., Yudin D.S. Dike Complexes in the Eastern Part of the Kaakhem Magmatic Area (Eastern Tuva): Composition, Age, Geological Position. Geodynamics & Tectonophysics. 2024;15(3):0760. (In Russ.) https://doi.org/10.5800/GT-2024-15-3-0760. EDN: VDLNWD

Views: 436


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)