Preview

Geodynamics & Tectonophysics

Advanced search

ON THE POSSIBLE FORMATION MECHANISM OF THE OPEN FRACTURING IN SEDIMENTARY BASINS

https://doi.org/10.5800/GT-2024-15-2-0754

EDN: GJZCIS

Abstract

The paper shows that the formation of orthogonal systems of open macrofractures (cleavages) of sedimentary basins can occur at the stage of diagenesis during the first hundreds of years for a small range of shelf depths (up to 100 m) during sedimentation. During this period, sediments are compacted and the excess water is slowly squeezed out, which determines the decrease in the Poisson’s ratio from values close to 0.5 to values 0.3–0.2. Because of this, in sediments, the stress state of which is almost completely determined only by the gravity of the overlying rocks, is reduced by 50 % or more of the horizontal compression stress level from the initial lithostatic pressure level. On the other hand, if the limit of pseudoplastic flow is reached in the rock, vertical compaction occurs, accompanied by an increase in horizontal compression. These two competing processes together with the factor of fluid pressure in fractures and pores determine the possibility of brittle fracture formation. It is shown that for rocks with a low level of yield strength (clay), compaction leads to an increase in the level of horizontal compression stresses, which makes brittle fracture in such rocks at the stage of diagenesis impossible. In rocks with a high level of strength (sandstone, limestone), brittle fracture due to excess water pressure in the sub­vertical microcracks starts earlier than the shear yield limit is reached.

About the Author

Yu. L. Rebetsky
Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
Russian Federation

10-1 Bolshaya Gruzinskaya St, Moscow 123242



References

1. Aydin A., 2014. Failure Modes of Shales and Their Implications for Natural and Manmade Fracture Assemblages. AAPG Bulletin 98 (11), 2391–2409. https://doi.org/10.1306/07311413112.

2. Chemenda A.I., 2019. Origin of Regular Networks of Joints: Experimental Constraints, Theoretical Background, and Numerical Modeling. Journal of Geophysical Research: Solid Earth 124 (8), 9164–9181. https://doi.org/10.1029/2019JB017454.

3. Chemenda A.I., Lamarche J., Matonti C., Bazalgette L., Richard P., 2021. Origin of Strong Nonlinear Dependence of Fracture (Joint) Spacing on Bed Thickness in Layered Rocks: Mechanical Analysis and Modeling. Journal of Geophysical Research: Solid Earth 126 (3), e2020JB020656. https://doi.org/10.1029/2020JB020656.

4. Cosgrove J.W., 2001. Hydraulic Fracturing during the Formation and Deformation of a Basin: A Factor in the Dewatering of Low-Permeability Sediments. AAPG Bulletin 85 (4), 737–748. https://doi.org/10.1306/8626C997-173B-11D7-8645000102C1865D.

5. Cumella S.P., Scheevel J., 2008. The Influence of Stratigraphy and Rock Mechanics on Mesaverde Gas Distribution Piceance Basin, Colorado. In: S.P. Cumella, K.W. Shanley, W.K. Camp (Eds), Understanding, Exploring, and Developing Tight-Gas Sands. Proceedings of the Vail Hedberg Conference. AAPG Hedberg Series 3, p. 137–155. https://doi.org/10.1306/13131054H33104.

6. Dinnik A.N., 1926. On Rock Pressure and Calculation of Round Shaft Support. An Engineering Worker 3, 1–12 (in Russian) [Динник А.Н. О давлении горных пород и расчете крепи круглой шахты // Инженерный работник. 1926. № 3. С. 1–12].

7. Dubinya N., Bayuk I., Hortov A., Myatchin K., Pirogova A., Shchuplov P., 2022. Prediction of Overpressure Zones in Marine Sediments Using Rock-Physics and Other Approaches. Journal of Marine Science and Engineering 10 (8), 1127. https://doi.org/10.3390/jmse10081127.

8. Eberli G.P., Baechle G.T., Anselmetti F.S., Incze M.L., 2003. Factors Controlling Elastic Properties in Carbonate Sediments and Rocks. The Leading Edge 22 (7), 654–660. https://doi.org/10.1190/1.1599691.

9. Engelder T., 1985. Loading Paths to Joint Propagation during a Tectonic Cycle: An Example from the Appalachian Plateau, U.S.A. Journal of Structural Geology 7 (3–4), 459–476. https://doi.org/10.1016/0191-8141(85)90049-5.

10. Engelder T., Lacazette A., 1990. Natural Hydraulic Fracturing. In: N. Barton, O. Stephansson (Eds), Rock Joints. A.A. Balkema, Rotterdam, p. 35–43.

11. Epifantsev O.G., Pletenchuk N.S., 2008. Fracturing of Rocks. Fundamentals of Theory and Methods of Study. Siberian State Industrial University, Novokuznetsk, 41 p. (in Russian) [Епифанцев О.Г., Плетенчук Н.С. Трещиноватость горных пород. Основы теории и методы изучения. Новокузнецк: СибГИУ, 2008. 41 с.].

12. Fall A., Eichhubl P., Bodnar R.J., Laubach S.E., Davis J.S., 2015. Natural Hydraulic Fracturing of Tight-Gas Sandstone Reservoirs, Piceance Basin, Colorado. GSA Bulletin 127 (1–2), 61–75. https://doi.org/10.1130/B31021.1.

13. Friedman G.M., 1998. Rapidity of Marine Carbonate Cementation – Implications for Carbonate Diagenesis and Sequence Stratigraphy: Perspective. Sedimentary Geology 119 (1–2), 1–4. https://doi.org/10.1016/S0037-0738(98)00075-X.

14. Frolov V.T., 1992. Lithology. Textbook. Book 1. MSU Publishing House, Moscow, 336 p. (in Russian) [Фролов В.Т. Литология: учебное пособие. М.: Изд-во МГУ, 1992. Кн. 1. 336 с.].

15. Frolov V.T., 1993. Lithology. Textbook. Book 2. MSU Publishing House, Moscow, 432 p. (in Russian) [Фролов В.Т. Литология: учебное пособие. М.: Изд-во МГУ, 1993. Кн. 2. 432 с.].

16. Frolov V.T., 1995. Lithology. Textbook. Book 3. MSU Publishing House, Moscow, 352 p. (in Russian) [Фролов В.Т. Литология: учебное пособие. М.: Изд-во МГУ, 1995. Кн. 3. 352 с.].

17. Guo L., Latham J.-P., Xiang J., 2017. A Numerical Study of Fracture Spacing and Through-Going Fracture Formation in Layered Rocks. International Journal of Solids and Structures 110–111, 44–57. https://doi.org/10.1016/j.ijsolstr.2017.02.004.

18. Handin J., Hager R.V., Friedman M., Feather J.N., 1963. Experimental Deformation of Sedimentary Rocks under Confi Ning Pressure: Pore Pressure Tests. AAPG Bulletin 47 (5), 717–755. https://doi.org/10.1306/BC743A87-16BE-11D7-8645000102C1865D.

19. Hubbert M.K., Willis D.G., 1957. Mechanics of Hydraulic Fracturing. Transactions of the American Institute of Mechanical Engineers 210, 153–168. https://doi.org/10.2118/686-G.

20. Jager J.C., 1962. Elasticity, Fracture and Flow. Springer, Dordrecht, 268 p. https://doi.org/10.1007/978-94-011-6024-7.

21. Lacazette A., Engelder T., 1992. Fluid-Driven Cyclic Propagation of a Joint in the Ithaca Siltstone, Appalachian Basin, New York. International Geophysics 51, 297–324. https://doi.org/10.1016/S0074-6142(08)62827-2.

22. Lavenu A.P.C., Lamarche J., 2018. What Controls Diffuse Fractures in Platform Carbonates? Insights from Provence (France) and Apulia (Italy). Journal of Structural Geology 108, 94–107. https://doi.org/10.1016/j.jsg.2017.05.011.

23. Lorenz J.C., Finley S.J., 1991. Regional Fractures II: Fracturing of Mesaverde Reservoirs in the Piceance Basin, Colorado. AAPG Bulletin 75 (11), 1738–1757. https://doi.org/10.1306/0C9B29ED-1710-11D7-8645000102C1865D.

24. Mandl G., 2005. Rock Joints. The Mechanical Genesis. Springer, Berlin, Heidelberg, 222 p. https://doi.org/10.1007/b137623.

25. Mikhailov A.E., 1956. Field Methods for Studying Cracks in Rocks. Gosgeoltehizdat, Moscow, 132 p. (in Russian) [Михайлов А.Е. Полевые методы изучения трещин в горных породах. М.: Госгеолтехиздат, 1956. 132 c.].

26. Olkhovatenko V.E., Trofimova G.I., Ozhogina T.V., 2015. Methods of Studying Rock Fracturing. Teaching Manual for Independent Work on the Course "Engineering Geology". TSUAB, Tomsk, 80 p. (in Russian) [Ольховатенко В.Е., Трофимова Г.И., Ожогина Т.В. Методы изучения трещиноватости горных пород: Учебно-методическое пособие для самостоятельной работы по курсу «Инженерная геология». Томск: Изд-во ТГАСУ, 2015. 80 с.].

27. Pollard D.D., Aydin A., 1988. Progress in Understanding Jointing over the Past Century. Geological Society of America Bulletin 100 (8), 1181–1204. https://doi.org/10.1130/0016-7606(1988)100%3C1181:PIUJOT%3E2.3.CO;2.

28. Rebetsky Yu.L., 2008. The Mechanism of Generation of Residual Stresses and Large Horizontal Compressive Stresses in the Earth’s Crust of Intraplate Orogens. In: Problems of Tectonophysics. To the 40th Anniversary of M.V. Gzovsky Laboratory of Tectonophysics, IPE RAS. IPE RAS, Moscow, p. 431–466 (in Russian) [Ребецкий Ю.Л. Механизм генерации остаточных напряжений и больших горизонтальных сжимающих напряжений в земной коре внутриплитовых орогенов // Проблемы тектонофизики: К сорокалетию создания М.В. Гзовским лаборатории тектонофизики в ИФЗ РАН. М.: ИФЗ РАН, 2008. С. 431–466].

29. Rebetsky Yu.L., Myagkov D.S., 2020. The Genesis of Tangential Mass Forces in Lithospheric Plates, and Their Role in Geodynamics. Bulletin of Kamchatka Regional Association "Educational-Scientific Center". Earth Sciences 47 (3), 86–97 (in Russian) [Ребецкий Ю.Л., Мягков Д.С. Генезис тангенциальных массовых сил в литосферных плитах и их роль в геодинамике // Вестник КРАУНЦ. Серия: Науки о Земле. 2020. Вып. 47. № 3. С. 86–97]. https://doi.org/10.31431/1816-5524-2020-47-3-86-97.

30. Secor D.T., 1965. Role of Fluid Pressure in Jointing. American Journal of Science 263 (8), 633–646. https://doi.org/10.2475/ajs.263.8.633.

31. Seminsky K.Zh., 2003. Internal Structure of Continental Fault Zones. Tectonophysical Aspect. GEO, Novosibirsk, 244 p. (in Russian) [Семинский К.Ж. Внутренняя структура континентальных разломных зон. Тектонофизический аспект. Новосибирск: Гео, 2003. 244 с.].

32. Spencer C.W., 1987. Hydrocarbon Generation as a Mechanism for Overpressuring in Rocky Mountain Region. AAPG Bulletin 71 (4), 368–388. https://doi.org/10.1306/94886EB6-1704-11D7-8645000102C1865D.

33. Stefanov Yu.P., 2005. Some Features of Numerical Modeling of the Behavior of Elastic-Brittle Plastic Materials. Physical Mesomechanics 8 (3), 129–142 (in Russian) [Стефанов Ю.П. Некоторые особенности численного моделирования поведения упруго-хрупкопластичных материалов // Физическая мезомеханика. 2005. Т. 8. № 3. С. 129–142].

34. Stefanov Yu.P., Tierselen M., 2007. Modeling of the Behavior of Highly Porous Geomaterials at Compaction Band Formation. Physical Mesomechanics 10 (1), 93–106 (in Russian) [Стефанов Ю.П., Тьерселен М. Моделирование поведения высокопористых геоматериалов при формировании полос локализованного уплотнения // Физическая мезомеханика. 2007. Т. 10. № 1. C. 93–106].

35. Strikha V.E., 2012. Methodical Manual on the Discipline "Structural Geology", a Short Course of Lectures. Textbook. Blagoveshchensk, Amur State University, 41 p. (in Russian) [Стриха В.Е. Методическое пособие по дисциплине «Структурная геология», краткий курс лекций: Учебное пособие. Благовещенск: АмГУ, 2012. 41 с.].

36. Price N.J., Cosgrove J.W., 1990. Analysis of Geological Structures. Cambridge University Press, New York, 502 p.

37. Twiss R.J., Moores E.M., 1992. Structural Geology. New York, W.H. Freeman and Company, 532 p.

38. Yurewicz D.A., Bohacs K.M., Yeakel J.D., Kronmueller K., 2003. Source Rock Analysis and Hydrocarbon Generation, Mesaverde Group and Mancos Shale, Northern Piceance Basin, Colorado. In: K.M. Peterson, T.M. Olson, D.S. Anderson (Eds), Piceance Basin Guidebook. Rocky Mountain Association of Geologists, Denver, CO, USA, p. 130–153.


Review

For citations:


Rebetsky Yu.L. ON THE POSSIBLE FORMATION MECHANISM OF THE OPEN FRACTURING IN SEDIMENTARY BASINS. Geodynamics & Tectonophysics. 2024;15(2):0754. (In Russ.) https://doi.org/10.5800/GT-2024-15-2-0754. EDN: GJZCIS

Views: 539


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)