Preview

Geodynamics & Tectonophysics

Advanced search

GEOCRYOLOGICAL CONDITIONS OF THE FORMATION OF GIANT SPRING AUFEIS AT THE ANMANGYNDA RIVER (MAGADAN REGION) ACCORDING TO GEOPHYSICAL DATA

https://doi.org/10.5800/GT-2024-15-2-0753

EDN: GJUKUB

Abstract

Giant aufeis fields, common in the Northeast of Russia, are the indicators of water exchange processes in cryosphere. The development of ideas about icing processes is relevant both from the fundamental point of view of studying the permafrost evolution, and from the practical point of view – for the development of aufeis hazard measures. The aufeis in the Anmangynda River basin (aufeis glade area 7 km2) is considered representative of the region, and its studies have been carried out since 1962. In 2022, during the period of maximum thawing of the active layer Electrical Resistivity Tomography (ERT) soundings were carried out at the aufeis glade aiming to identify underchannel taliks and flooded fault zones in bedrock, including local areas of groundwater discharge. It was found that within the main river channels there are underchannel taliks up to 30 m deep. According to the results of 2D inversion, local anomalies of low electrical resistivity mark groundwater filtration channels. In 3D geoelectrical models, pipe-like anomalies of low resistivity are identified in the areas of groundwater discharge, interpreted as filtration channels in the alluvium and the zone of exogenous fracturing in bedrock formed by sandy-clay shales, as well as linear vertical anomalies of low resistivity, interpreted as faults. On vertical sections of 3D resistive models, a connection between faults and filtration channels in alluvium and a layer of exogenous fracturing is traced. In the right bank of the valley, geoelectric signs of taliks in the bedrock, presumably associated with fault tectonics, have been established. It is assumed that the identified faults are the additional transit routes for groundwater in the Anmangynda River valley, along with the alluvial aquifer and the zone of exogenous fracturing of bedrock.

About the Authors

V. V. Olenchenko
Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

3 Academician Koptyug Ave, Novosibirsk 630090



O. M. Makarieva
Saint Petersburg University ; North-Eastern State University
Russian Federation

7-9 Universitetskaya Emb, Saint Petersburg 199034

13 Portovaya St, Magadan 685000



A. A. Zemlianskova
Saint Petersburg University ; North-Eastern State University
Russian Federation

7-9 Universitetskaya Emb, Saint Petersburg 199034

13 Portovaya St, Magadan 685000



A. A. Ostashov
Saint Petersburg University ; State Hydrological Institute
Russian Federation

7-9 Universitetskaya Emb, Saint Petersburg 199034

23 2nd Line, Vasilievsky Island, Saint Petersburg 199004



A. S. Kalganov
Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

3 Academician Koptyug Ave, Novosibirsk 630090



A. V. Chekryzhov
Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

3 Academician Koptyug Ave, Novosibirsk 630090



References

1. Alekseyev V.R., 2015. Cryogenesis and Geodynamics of Icing Valleys. Geodynamics & Tectonophysics 6 (2), 171–224 (in Russian) [Алексеев В.Р. Криогенез и геодинамика наледных участков речных долин // Геодинамика и тектонофизика. 2015. Т. 6. № 2. С. 171–224]. https://doi.org/10.5800/GT-2015-6-2-0177.

2. Bukaev N.A., 1969. Basic Regularities in Formation of Giant Aufeis in the Upper Reaches of the Kolyma River (by the Example of the Anmangynda Aufeis). In: Aufeis in Siberia. Iss. 4. Nauka, Moscow, p. 62–78 (in Russian) [Букаев Н.А. Основные закономерности режима гигантских наледей в верховьях р. Колымы (на примере Анмангындинской наледи) // Наледи Сибири. М.: Наука, 1969. № 4. С. 62–78].

3. Geological Map of the USSR, 1968. Verkhnekolymskaya Series. Scale 1:200000. Sheet P-55-XXX. Explanatory Note. Nedra, Moscow, 67 p. (in Russian) [Геологическая карта СССР. Серия Верхнеколымская. Масштаб 1:200000. Лист P-55-XXX: Объяснительная записка. М.: Недра, 1968. 67 с.].

4. Kalabin A.I., 1957. Sources and Aufeis in the North-East of the USSR. Proceedings of AUSRI-1. Chapter 1. Permafrost Science. Iss. 7. Magadan, p. 10–32 (in Russian) [Калабин А.И. Источники и наледи подземных вод на Северо-Востоке СССР // Труды ВНИИ–1. Разд. 1. Мерзлотоведение. Магадан, 1957. Вып. 7. С. 10–32].

5. Kneisel Ch., Hauck Ch., Fortier R., Moorman B., 2008. Advances in Geophysical Methods of Permafrost Investigations. Permafrost and Periglacial Processes 19 (2), 157–178. https://doi.org/10.1002/ppp.616.

6. Lebedev V.M., Ipatieva A.I., 1980. The Anmangynda Aufeis, Its Regime and Role in the Water Balance of the River Basin. Proceedings of DVNIGMI. Hydrological Studies and Forecasts. Iss. 84. Gidrometeoizdat, Leningrad, p. 86–93 (in Russian) [Лебедев В.М., Ипатьева А.И. Анмангындинская наледь, ее режим и роль в водном балансе речного бассейна // Труды ДВНИГМИ. Гидрологические исследования и прогнозы. Л.: Гидрометеоиздат, 1980. Вып. 84. С. 86–93].

7. Liu W., Fortier R., Molson J., Lemieux J-M., 2021. A Conceptual Model for Talik Dynamics and Icing Formation in a River Floodplain in the Continuous Permafrost Zone at Salluit, Nunavik (Quebec), Canada. Permafrost and Periglacial Processes 32 (3), 468–483. https://doi.org/10.1002/ppp.2111.

8. Loke M.H., 2014. Tutorial: 2-D and 3-D Electrical Imaging Surveys. Geotomo Software, Malaysia, 216 p.

9. Loke M.H., 2018. Tutorial: 2-D and 3-D Electrical Imaging Surveys. Part 8, p. 127–178. Available from: www.geotomosoft.com (Last Accessed July 15, 2023).

10. Makarieva O.M., Nesterova N.V., Ostashov A.A., Zemlyanskova A.A., Tumskoy V.E., Gagarin L.A., Ekaykin A.A., Shikhov A.N., Olenchenko V.V., Khristoforov I.I., 2021. Perspectives of the Development of Complex Interdisciplinary Hydrological and Geocryological Research in the North-East of Russia. Vestnik of Saint Petersburg University. Earth Sciences 66 (1), 74–90. https://doi.org/10.21638/spbu07.2021.105.

11. Mikhailov V.M., 2005. Floodplain Taliks of the North-East of Russia. PhD Thesis (Doctor of Geographical Sciences). Yakutsk, 364 p. (in Russian) [Михайлов В.М. Пойменные талики Северо-Востока России: Дис. ... докт. геогр. наук. Якутск, 2005. 364 с.].

12. Mikhailov V.M., 2014. Geographical Regularities of Distribution of Floodplain Taliks. Bulletin of the Russian Academy of Sciences. Geography 1, 65–74 (in Russian) [Михайлов В.М. Географические закономерности распространения пойменных таликов // Известия Российской академии наук. Серия географическая. 2014. № 1. С. 65−74]. https://doi.org/10.15356/0373-2444-2014-1-65-74.

13. Olenchenko V.V., Makarieva O.M., Zemlianskova A.A., Danilov K.P., Ostashov A.A., Kalganov A.S., Nesterova N.V., Khristoforov I.I., 2023. Geophysical Indicators of Aufeis in the Anmangynda River (Magadan Region). Geodynamics & Tectonophysics 14 (3), 0702 (in Russian) [Оленченко В.В., Макарьева О.М., Землянскова А.А., Данилов К.П., Осташов А.А., Калганов А.С., Нестерова Н.В., Христофоров И.И. Геофизические признаки источников гигантской наледи на р. Анмангында (Магаданская область) // Геодинамика и тектонофизика. 2023. Т. 14. № 3. 0702]. https://doi.org/10.5800/GT-2023-14-3-0702.

14. Olenchenko V.V., Osipova P.S., 2022. Electrical Resistivity Tomography of Alluvial Deposits during Prospecting for Placer Gold. Russian Geology and Geophysics 63 (1), 98−108. https://doi.org/10.2113/RGG20204203.

15. Potapov V.V., Makarieva O.M., Olenchenko V.V., 2022. Geoelectric Structure of the Section on the Anmangynda Ice (Magadan Region) According to the Data of the TEM Method. Interexpo GEO-Siberia 2 (3), 59–65 (in Russian) [Потапов В.В., Макарьева О.М., Оленченко В.В. Геоэлектрическое строение разреза на Анмангындинской наледи (Магаданская область) по данным метода ЗСБ // Интерэкспо Гео-Сибирь. 2022. Т. 2. № 3. С. 59–65]. DOI: 10.33764/2618-981X-2022-2-3-59-65.

16. Report on the Results of the Water Balance Studies with the Aufeis Component in the Anmangynda River Basin, 1977. Kolyma Territorial Administration for Hydrometeorological and Environmental Monitoring, Magadan, 62 p. (in Russian) [Отчет по результатам воднобалансовых исследований с наледной составляющей в бассейне р. Анмангында. Магадан: Колымское УГМС, 1977. 62 с.].

17. Romanovsky N.N., 1973. On the Geological Activity of Glaciers. Permafrost Research. Vol. XIII. MSU Publishing House, Moscow, p. 66–89 (in Russian) [Романовский Н.Н. О геологической деятельности наледей // Мерзлотные исследования. Вып. XIII. М.: Изд-во МГУ, 1973. C. 66−89].

18. Solovyova G.V., 1967. Aufeis Regulation of Groundwater Runoff in the Areas of Widespread Occurrence of Permafrost. Final Report. Vol. 1. Moscow, 447 p. (in Russian) [Соловьева Г.В. Наледное регулирование подземного стока в районах широкого развития многолетнемерзлых пород: Окончательный отчет. М., 1967. Т. 1. 447 с.].

19. Tolstikhin O.N., 1974. Aufeis and Groundwater in the Northeast of the USSR. Nauka, Novosibirsk, 164 p. (in Russian) [Толстихин О.Н. Наледи и подземные воды северо-востока СССР. Новосибирск: Наука, 1974. 164 с.].

20. Walther M., Batsaikhan V., Dashtseren A., Jambaljav Y., Temujin Kh., Ulanbayar G., Kamp U., 2021. The Formation of Aufeis and Its Impact on Infrastructure around Ulaanbaatar, North-Central Mongolia. Exploration into the Biological Resources of Mongolia 14, 385–398.

21. Zemlianskova A.A., Alekseev V.R., Shikhov A.N., Ostashov A.A., Nesterova N.V., Makarieva O.M., 2023a. Long-Term Dynamics of the Huge Anmangynda Aufeis in the North- East of Russia (1962–2021). Ice and Snow 63 (1), 71–84 (in Russian) [Землянскова А.А., Алексеев В.Р., Шихов А.Н., Осташов А.А., Нестерова Н.В., Макарьева О.М. Многолетняя динамика гигантской Анмангындинской наледи на Северо-Востоке России (1962–2021 гг.) // Лёд и снег. 2023a. Т. 63 № 1. С. 71–84]. DOI:10.31857/S207667342 3010167.

22. Zemlianskova A., Makarieva O., Shikhov A., Alekseev V., Nesterova N., Ostashov A., 2023b. The Impact of Climate Change on Seasonal Glaciation in the Mountainous Permafrost of North-Eastern Eurasia by the Example of the Giant Anmangynda Aufeis. CATENA 233, 107530. https://doi.org/10.1016/j.catena.2023.107530.

23. Zemlianskova A.A., Olenchenko V.V., Makarieva O.M., 2023с. Features of Seasonal Freezing of Sediments of the Aufeis Glade in the Anmangynda River Valley (Magadan Region) Inferred from Ground Penetrating Radar Sounding. In: Georadar-2023. Collection of Abstracts of the VI Scientific and Practical Conference (March 22–24, 2023). Publishing House "Academy of Natural History", Moscow, p. 74–80 (in Russian) [Землянскова А.А., Оленченко В.В., Макарьева О.М. Особенности сезонного промерзания пород наледной поляны в долине р. Анмангында (Магаданская область) по данным георадиолокации // Георадар-2023: Сборник тезисов VI научно-практической конференции (22–24 марта 2023 г.). М.: Издательский дом «Академия Естествознания», 2023. С. 74–80].

24. Zykov Yu.D., 2007. Geophysical Methods of Cryolithozone Research. MSU Publishing House, Moscow, 264 p. (in Russian) [Зыков Ю.Д. Геофизические методы исследования криолитозоны. М.: Изд-во МГУ, 2007. 264 с.].


Review

For citations:


Olenchenko V.V., Makarieva O.M., Zemlianskova A.A., Ostashov A.A., Kalganov A.S., Chekryzhov A.V. GEOCRYOLOGICAL CONDITIONS OF THE FORMATION OF GIANT SPRING AUFEIS AT THE ANMANGYNDA RIVER (MAGADAN REGION) ACCORDING TO GEOPHYSICAL DATA. Geodynamics & Tectonophysics. 2024;15(2):0753. (In Russ.) https://doi.org/10.5800/GT-2024-15-2-0753. EDN: GJUKUB

Views: 793


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)