Preview

Geodynamics & Tectonophysics

Advanced search

MINERALOGY AND ZIRCON AGE OF CARBONATITES OF THE SREDNYAYA ZIMA COMPLEX (EASTERN SAYAN)

https://doi.org/10.5800/GT-2024-15-2-0749

EDN: MHGVEB

Abstract

The Srednyaya Zima alkaline-ultramafic carbonatite complex is located in the Eastern Sayan and is a part of the area of manifestation of Neoproterozoic rare-metal alkaline-carbonatite magmatism along the southern and southeastern margins of the Siberian craton. Mineralogical studies of calciocarbonatites of the Srednyaya Zima complex have shown the presence of primary magmatic mineral phases of calcite, biotite (annite-phlogopite), ilmenite, and fluorapatite. Pyrochlore, zircon, burbankite, magnetite, rutile, titanite, strontianite, and barite were identified of the accessory minerals. The chemical composition of the magmatic minerals of the Srednyaya Zima carbonatites is similar to the mineral composition of the closely aged carbonatite complexes Belaya Zima and Arbarastakh. The rare-element and structural analysis of zircon from carbonatites showed the presence of two zones – a magmatic core and areas of recrystallization. U-Pb dating of igneous zircon showed the age interval of its crystallization – 637±4 Ma, which coincides with the geochronology of the formation of alkali-ultramafic rare-metal complexes along the southern margin of the Siberian craton. The formation of Neoproterozoic alkaline-carbonatite complexes is associated with tectonic events of the breakup of the Rodinia supercontinent.

About the Authors

I. R. Prokopyev
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences ; Novosibirsk State University
Russian Federation

3 Academician Koptyug Ave, Novosibirsk 630090

1 Pirogov St, Novosibirsk 630090



A. G. Doroshkevich
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences ;Dobretsov Geological Institute, Siberian Branch of the Russian Academy of Sciences
Russian Federation

3 Academician Koptyug Ave, Novosibirsk 630090

6а Sakhyanova St, Ulan-Ude 670047, Republic of Buryatia



M. D. Varchenko
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences ; Novosibirsk State University
Russian Federation

3 Academician Koptyug Ave, Novosibirsk 630090

1 Pirogov St, Novosibirsk 630090



D. V. Semenova
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
Russian Federation

3 Academician Koptyug Ave, Novosibirsk 630090



I. A. Izbrodin
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
Russian Federation

3 Academician Koptyug Ave, Novosibirsk 630090



M. N. Kruk
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
Russian Federation

3 Academician Koptyug Ave, Novosibirsk 630090



References

1. Abersteiner A., Kamenetsky V.S., Goemann K., Kjarsgaard B.A., Fedortchouk Y., Ehrig K., Kamenetsky M., 2020. Evolution of Kimberlite Magmas in the Crust: A Case Study of Groundmass and Mineral-Hosted Inclusions in the Mark Kimberlite (Lac de Gras, Canada). Lithos, 372–373, 105690. https://doi.org/10.1016/j.lithos.2020.105690.

2. Atencio D., Andrade M.B., Christy A.G., Gieré R., Kartashov P.M., 2010. The Pyrochlore Supergroup of Minerals: Nomenclature. The Canadian Mineralogist 48 (3), 673–698. https://doi.org/10.3749/canmin.48.3.673.

3. Bagdasarov Yu.A., Gusev G.S., Gushchin A.V., Mezhelovsky N.V., Morozov A.F., 2001. Metallogeny of Magmatic Complexes of Intraplate Geodynamic Settings. GEOS, Moscow, 640 p. (in Russian) [Багдасаров Ю.А., Гусев Г.С., Гущин А.В., Межеловский Н.В., Морозов А.Ф. Металлогения магматических комплексов внутриплитовых геодинамических обстановок. М.: ГЕОС, 2001. 640 с.].

4. Black L.P., Kamo S.L., Allen C.M., Davis D.W., Aleinikoff J.N., Valley J.W., Mundil R., Campbell I.H., Korsch R.J., Williams I.S., Foudoulis C., 2004. Improved 206Pb/218U Microprobe Geochronology by the Monitoring of a Trace-Element-Related Matrix Effect; SHRIMP, ID-TIMS, ELA-ICP-MS and Oxygen Isotope Documentation for a Series of Zircon Standards. Chemical Geology 205 (1–2), 115–140. https://doi.org/10.1016/j.chemgeo.2004.01.003.

5. Brod J.A., Gaspar J.C., Araujo D.P., Gibson S.A., Thompson R.N., Junqueira-Brod T.C., 2001. Phlogopite and Tetra-Ferriphlogopite from Brazilian Carbonatite Complexes: Petrogenetic Constraints and Implications for Mineral-Chemistry Systematics. Journal of Asian Earth Sciences 19 (3), 265–296.

6. Broom-Fendley S., Styles M.T., Appleton J.D., Gunn G., Wall F., 2016. Evidence for Dissolution-Reprecipitation of Apatite and Preferential LREE Mobility in Carbonatite-Derived Late-Stage Hydrothermal Processes. American Mineralogist 101 (3), 596–611. https://doi.org/10.2138/am-2016-5502CCBY.

7. Chakhmouradian A.R., Reguir E.P., Zaitsev A.N., Couëslan C., Xu C., Kynický J., Mumin A.H., Yang P., 2017. Apatite in Carbonatitic Rocks: Compositional Variation, Zoning, Element Partitioning and Petrogenetic Significance. Lithos 274–275, 188–213. https://doi.org/10.1016/j.lithos.2016.12.037.

8. Chalapathi Rao N.V., Wu F.-Y., Mitchell R.H., Li Q.-L., Lehmann B., 2013. Mesoproterozoic U-Pb Ages, Trace Element and Sr-Nd Isotopic Composition of Perovskite from Kimberlites of the Eastern Dharwar Craton, Southern India: Distinct Mantle Sources and a Widespread 1.1 Ga Tectonomagmatic Event. Chemical Geology 353, 48–64. https://doi.org/10.1016/j.chemgeo.2012.04.023.

9. Dalton J.A., Wood B.J., 1993. The Compositions of Primary Carbonate Melts and Their Evolution through Wallrock Reaction in the Mantle. Earth and Planetary Science Letters 119 (4), 511–525. https://doi.org/10.1016/0012-821X(93)90059-I.

10. Doroshkevich A.G., Chebotarev D.A., Sharygin V.V., Prokopyev I.R., Nikolenko A.M., 2019. Petrology of Alkaline Silicate Rocks and Carbonatites of the Chuktukon Massif, Chadobets Upland, Russia: Sources, Evolution and Relation to the Triassic Siberian LIP. Lithos 332–333, 245–260. https://doi.org/10.1016/j.lithos.2019.03.006.

11. Doroshkevich A., Prokopyev I., Kruk M., Sharygin V., Izbrodin I., Starikova A., Ponomarchuk A., Izokh A., Nugumanova Y., 2022. Age and Petrogenesis of Ultramafic Lamprophyres of the Arbarastakh Alkaline-Carbonatite Complex, Aldan-Stanovoy Shield, South of Siberian Craton (Russia): Evidence for Ultramafic Lamprophyre-Carbonatite Link. Journal of Petrology 63 (9), egac073. https://doi.org/10.1093/petrology/egac073.

12. Doroshkevich A.G., Sharygin V.V., Belousova E.A., Izbrodin I.A., Prokopyev I.R., 2021. Zircon from the Chuktukon Alkaline Ultramafic Carbonatite Complex (Chadobets Uplift. Siberian Craton) as Evidence of Source Heterogeneity. Lithos 382–383, 105957. https://doi.org/10.1016/j.lithos.2020.105957.

13. Doroshkevich A.G., Veksler I.V., Izbrodin I.A., Ripp G.S., Khromova E.A., Posokhov V.F., Travin A.V., Vladykin N.V., 2016. Stable Isotope Composition of Minerals in the Belaya Zima Plutonic Complex, Russia: Implications for the Sources of the Parental Magma and Metasomatizing Fluids. Journal of Asian Earth Sciences 116, 81–96. https://doi.org/10.1016/j.jseaes.2015.11.011.

14. Ernst R.E., Hamilton M.A., 2009. Age 725 Ma (U-Pb by Baddeleyite) of the Dovyrenskaya Intrusion of Siberia: Correlation with the Giant Franklin Magmatic Province of Northern Laurentia, Dated as 723 Ma. In: Geology of Polar Regions of the Earth. Proceedings of the XLII Tectonic Meeting. Vol. 2. GEOS, Moscow, p. 330–332 (in Russian) [Эрнст Р.Е., Гамильтон М.А. Возраст 725 млн лет (U-Pb по бадделеиту) Довыренской интрузии Сибири: корреляция с гигантской Франклинской магматической провинцией Северной Лаврентии, датированной как 723 млн лет // Геология полярных областей Земли: Материалы XLII тектонического совещания. М.: ГЕОС, 2009. Т. 2. С. 330–332].

15. Foley S., Yaxley G., Rosenthal A., Buhre S., Kiseeva E., Rapp R., Jacob D., 2009. The Composition of Near-Solidus Melts of Peridotite in the Presence of CO2 and H2O between 40 and 60 kbar. Lithos 112, 274–283. https://doi.org/10.1016/j.lithos.2009.03.020.

16. Frolov A.A., Belov S.V., 1999. Complex Carbonatite Deposits of the Zima Ore Region (Eastern Sayan, Russia). Geology of Ore Deposits 41 (2), 109–130 (in Russian) [Фролов А.А., Белов С.В. Комплексные карбонатитовые месторождения Зиминского рудного района (Восточный Саян, Россия) // Геология рудных месторождений. 1999. Т. 41. № 2. С. 109–130].

17. Frolov A.A., Tolstov A.R., Belov S.V., 2003. Carbonatite Deposits of Russia. Priroda, Moscow, 287 p. (in Russian) [Фролов А.А., Толстов А.Р., Белов С.В. Карбонатитовые месторождения России. М.: Природа, 2003. 287 с.].

18. Gladkochub D.P., Pisarevsky S.A., Donskaya T.V., Ernst R.E., Wingate M.T., Söderlund U., Mazukabzov A.M., Sklyarov E.V., Hamilton M.A., Hanes J.A., 2010. Proterozoic Mafic Magmatism in Siberian Craton: An Overview and Implications for Paleocontinental Reconstruction. Precambrian Research 183 (3), 660–668. https://doi.org/10.1016/j.precamres.2010.02.023.

19. Griffin W.L., Powell W.J., Pearson N.J., O’Reilly S.Y., 2008. GLITTER: Data Reduction Software for Laser Ablation ICP-MS. In: P.J. Sylvester (Ed.), Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course Series. Vol. 40. Vancouver, p. 308–311.

20. Guzmics T., Zajacz Z., 2013. Trace Element Partitioning between Immiscible Silicate and Carbonate Melts, Based on Natural Melt Inclusions from Kerimasi Volcano, Tanzania. G – Goldschmidt Abstracts 2013. Mineralogical Magazine 77 (5), 1125–1238. https://doi.org/10.1180/minmag.2013.077.5.7.

21. Hamilton D., Kjarsgaard B., 1993. The Immiscibility of Silicate and Carbonate Liquids. South African Journal of Geology 96 (3), 139–142.

22. Hiess J., Condon D.J., McLean N., Noble S.R., 2012. 238U/235U Systematics in Terrestrial Uranium-Bearing Minerals. Science 335 (6076), 1610–1614. https://doi.org/10.1126/science.1215507.

23. Hogarth D., 1989. Pyrochlore, Apatite and Amphibole: Distinctive Minerals in Carbonatite. Carbonatite: Genesis and Evolution. Unwin Hyman, London, p. 105–148.

24. Hoskin P.W.O., Schaltegger U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry 53 (1), 27–62. https://doi.org/10.2113/0530027.

25. Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon Geochronology. Chemical Geology 211 (1–2), 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017.

26. Jelsma H., Barnett W., Richards S., Lister G., 2009. Tectonic Setting of Kimberlites. Lithos 112, 155–165. https://doi.org/10.1016/j.lithos.2009.06.030.

27. Kogarko L.N., Konova V.A., Orlova M.P., Woolley A.R., 1995. Alkaline Rocks and Carbonatites of the World. Part 2: Former USSR. Springer, Dordrecht, 226 p.

28. Kuzmin M.I., Yarmolyuk V.V., 2014. Mantle Plumes of Central Asia (Northeast Asia) and Their Role in Forming Endogenous Deposits. Russian Geology and Geophysics 55 (2), 120–143. https://doi.org/10.1016/j.rgg.2014.01.002.

29. Le Bas M., 1987. Nephelinites and Carbonatites. Geological Society of London, Special Publications 30, 53–83. https://doi.org/10.1144/GSL.SP.1987.030.01.05.

30. Li Z.X., Bogdanova S.V., Collins A.S., Davidson A., De Waele B., Ernst R.E., Fitzsimons I.C.W., Fuck R.A. et al., 2008. Assembly, Configuration, and Break-up History of Rodinia: A Synthesis. Precambrian Research 160 (1–2), 179–210. https://doi.org/10.1016/j.precamres.2007.04.021.

31. Ludwig K.R., 2003. ISOPLOT/Ex: A Geochronological Toolkit for Microsoft Excel. Version 3.00. Berkeley Geochronology Center Special Publication 4, 74 p.

32. Marfin A.E., Radomskaya T.A., Ivanov A.V., Kamenetsky V.S., Kamenetsky M.B., Yakich T.Yu., Gertner I.F., Kamo S.L. et al., 2021. U-Pb Dating of Apatite, Titanite and Zircon of the Kingash Mafic-Ultramafic Massif, Kan Terrane, Siberia: from Rodinia Break-up to the Reunion with the Siberian Craton. Journal of Petrology 62 (9), egab049. https://doi.org/10.1093/petrology/egab049.

33. Metelkin D.V., Vernikovsky V.A., Kazansky A.Yu., 2007. Neoproterozoic Evolution of Rodinia: Constraints from New Paleomagnetic Data on the Western Margin of the Siberian Craton. Russian Geology and Geophysics 48 (1), 32–45.

34. Mitchell R.H., 2005. Carbonatites and Carbonatites and Carbonatites. The Canadian Mineralogist 43 (6), 2049–2068. https://doi.org/10.2113/gscanmin.43.6.2049.

35. Moore A., Blenkinsop T., Coterill F., 2008. Controls on Post-Gondwana Alkaline Magmatism in Southern Africa. Earth and Planetary Science Letters 268 (1–2), 151–164. https://doi.org/10.1016/j.epsl.2008.01.007.

36. Morikiyo T., Takano K., Miyazaki T., Kagami H., Vladykin N.V., 2000. Sr, Nd, C and O Isotopic Compositions of Carbonatite and Peralkaline Silicate Rocks from the Zhidoy Complex, Russia: Evidence for Binary Mixing, Liquid Immiscibility and a Heterogeneous Depleted Mantle Source Region. Journal of Mineralogical and Petrological Sciences 95 (7), 162–172. https://doi.org/10.2465/jmps.95.162.

37. Nosova A.A., Kargin A.V., Sazonova L.V., Dubinina E.O., Chugaev A.V., Lebedeva N.M., Yudin D.S., Larionova Y.O. et al., 2020. Sr-Nd-Pb Isotopic Systematic and Geochronology of Ultramafic Alkaline Magmatism of the Southwestern Margin of the Siberian Craton: Metasomatism of the Subcontinental Lithospheric Mantle Related to Subduction and Plume Events. Lithos 364–365, 105509. https://doi.org/10.1016/j.lithos.2020.105509.

38. Nosova A.A., Sazonova L.V., Kargin A.V., Smirnova M.D., Lapin A.V., Shcherbakov V.D., 2018. Olivine in Ultramafic Lamprophyres: Chemistry, Crystallisation, and Melt Sources of Siberian Pre- and Post-Trap Aillikites. Contributions to Mineralogy and Petrology 173, 55. https://doi.org/10.1007/s00410-018-1480-3.

39. Nozhkin A.D., Turkina O.M., Travin A.V., Bayanova T.B., Berezhnaya N.G., Larionov A.N., Postnikov A.A., Ernst R.E., 2008. Neoproterozoic Rift and Within-Plate Magmatism in the Yenisei Ridge: Implications for the Breakup of Rodinia. Russian Geology and Geophysics 49 (7), 503–519. https://doi.org/10.1016/j.rgg.2008.06.007.

40. Pozharitskaya L.K., Samoilov V.S., 1972. Petrology, Mineralogy and Geochemistry of Carbonatites in Eastern Siberia. Nauka, Moscow, 270 p. (in Russian) [Пожарицкая Л.К., Самойлов В.С. Петрология, минералогия и геохимия карбонатитов Восточной Сибири. М.: Наука, 1972. 270 с.].

41. Prokopyev I.R., Doroshkevich A.G., Ponomarchuk A.V., Kruk M.N., Izbrodin I.A., Vladykin N.V., 2022. Geochronology of the Alkaline-Ultra-Basic Carbonatite Complex Arbarastakh (Aldan Shield, Yakutia): New Ar-Ar and U-Pb Data. Geosphere Research 4, 48–66 (in Russian) [Прокопьев И.Р., Дорошкевич А.Г., Пономарчук А.В., Крук М.Н., Избродин И.А., Владыкин Н.В. Геохронология щелочно-ультраосновного карбонатитового комплекса Арбарастах (Алданский щит, Якутия): новые Ar-Ar и U-Pb данные // Геосферные исследования. 2022. № 4. С. 48–66]. https://doi.org/10.17223/25421379/25/3.

42. Prokopyev I.R., Doroshkevich A.G., Zhumadilova D.V., Starikova A.E., Nugumanova Ya.N., Vladykin N.V., 2021. Petrogenesis of Zr-Nb (REE) Carbonatites from the Arbarastakh Complex (Aldan Shield, Russia): Mineralogy and Inclusion Data. Ore Geology Reviews 131, 104042. https://doi.org/10.1016/j.oregeorev.2021.104042.

43. Rasskazov S.V., Il’yasova A.M., Konev A.A., Yasnygina T.A., Maslovskaya M.N., Fefelov N.N., Demonterova E.I., Saranina E.V., 2007. Geochemical Evolution of the Zadoi Alkaline-Ultramafic Massif, Cis-Sayan Area, Southern Siberia. Geochemistry International 45, 1–14. https://doi.org/10.1134/S0016702907010016.

44. Ripp G.S., Doroshkevick A.G., Posokhov V.F., 2009. Age of Carbonatite Magmatism in Transbaikalia. Petrology 17, 73–89. https://doi.org/10.1134/S0869591109010044.

45. Rock N., 1986. The Nature and Origin of Ultramafic Lamprophyres: Alnöites and Allied Rocks. Journal of Petrology 27 (1), 155–196. https://doi.org/10.1093/petrology/27.1.155.

46. Salnikova E.B., Chakhmouradian A.R., Stifeeva M.V., Reguir E.P., Kotov A.B., Gritsenko Y.D., Nikiforov A.V., 2019. Calcic Garnets as a Geochronological and Petrogenetic Tool Applicable to a Wide Variety of Rocks. Lithos 338–339, 141–154. https://doi.org/10.1016/j.lithos.2019.03.032.

47. Salnikova E.B., Stifeeva M.V., Kotov A.B., Anisimova I.V., Nikiforov A.V., Yarmolyuk V.V., Sugorakova A.M., Vrublevskii V.V., 2018. Andradite-Morimotoite Garnets as Promising U-Pb Geochronometers for Dating Ultrabasic Alkaline Rocks. Doklady Earth Sciences 480, 778–782. https://doi.org/10.1134/S1028334X18060168.

48. Savelieva V.B., Bazarova E.P., Danilova Yu.V., Danilov B.S., 2022. Geochemical Features of Dike Aillikites and Alkaline Rocks of the Bolshetagninsky Massif (Urik-Iya Graben, East Sayan Region). Geodynamics & Tectonophysics 13 (2), 0614 (in Russian) [Савельева В.Б., Базарова Е.П., Данилова Ю.В., Данилов Б.С. Геохимические особенности дайковых айлликитов и щелочных пород Большетагнинского массива (Урикско-Ийский грабен, Восточное Присанье) // Геодинамика и тектонофизика. 2022. Т. 13. № 2. 0614]. https://doi.org/10.5800/GT-2022-13-2s-0614.

49. Sharygin I.S., Gladkochub E.A., Nikolenko E.I., Danilova Y.V., Marfin A.E., Skuzovatov S.Y., Gladkov A.S., Bryansky N.V., Ivanov A.V., Koshkarev D.A., 2022. Age of Explosion Tubes of the Chapinsky Alkaline-Ultrabasic Complex (Yenisei Ridge). In: Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent). Proceedings of Scientific Meeting (October 18–21, 2022). Iss. 20. IEC SB RAS, Irkutsk, p. 317–318 (in Russian) [Шарыгин И.С., Гладкочуб Е.А., Николенко Е.И., Данилова Ю.В., Марфин А.Е., Скузоватов С.Ю., Гладков А.С., Брянский Н.В., Иванов А.В., Кошкарев Д.А. Возраст трубок взрыва Чапинского щелочно-ультраосновного комплекса (Енисейский кряж) // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту): Материалы научного совещания (18–21 октября 2022 г.). Иркутск: ИЗК СО РАН, 2022. Вып. 20. С. 317–318].

50. Sklyarov E.V., Gladkochub D.P., Mazukabzov A.M., Menshagin Y.V., Watanabe T., Pisarevsky S.A., 2003. Neoproterozoic Mafic Dike Swarms of the Sharyzhalgai Metamorphic Massif (Southern Siberian Craton). Precambrian Research 122 (1–4), 359–376. https://doi.org/10.1016/S0301-9268(02)00219-X.

51. Skublov S.G., Lobach-Zhuchenko S.B., Guseva N.S., Gembitskaya I.M., Tolmacheva E.V., 2009. Rare Earth and Trace Element Distribution in Zircons from Miaskite Lamproites of the Panozero Complex, Central Karelia. Geochemistry International 47, 901–913. https://doi.org/10.1134/S0016702909090043.

52. Sláma J., Košler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A. et al., 2008. Plešovice Zircon – A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology 249 (1–2), 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005.

53. Sobachenko V.S., Plusnin G.S., Sandimirova G.P., Pakholchenko Y.A., 1986. Rubidium-Strontium Age of Near-Fault Alkaline Metasomatites and Granites of the Tatar-Penchenga Zone (Yenisei Ridge). Doklady of the USSR Academy of Sciences 287 (5), 1220–1224 (in Russian) [Собаченко В.С., Плюснин Г.С., Сандимирова Г.П., Пахольченко Ю.А. Рубидий-стронциевый возраст приразломных щелочных метосоматитов и гранитов Татарско-Пенченгинской зоны (Енисейский кряж) // Доклады АН СССР. 1986. Т. 287. № 5. С. 1220–1224].

54. Stifeeva M., Salnikova E., Nosova A., Kotov A., Voznyak A., Dimitrova D., 2023. U-Pb (ID-TIMS) Age of Garnet from Aillikites of the Kola Alkali Province. Doklady Earth Sciences 508, 81–84. https://doi.org/10.1134/S1028334X22601997.

55. Sun S.-S., McDonough W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications 42 (1), 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.

56. Tappe S., Foley S.F., Jenner G.A., Heaman L.M., Kjarsgaard B.A., Romer R.L., Stracke A., Joyce N., Hoefs J., 2006. Genesis of Ultramafic Lamprophyres and Carbonatites at Aillik Bay, Labrador: A Consequence of Incipient Lithospheric Thinning beneath the North Atlantic Craton. Journal of Petrology 47 (7), 1261–1315. https://doi.org/10.1093/petrology/egl008.

57. Tappe S., Kjarsgaard B.A., Kurszlaukis S., Nowell G.M., Phillips D., 2014. Petrology and Nd-Hf Isotope Geochemistry of the Neoproterozoic Amon Kimberlite Sills, Baffin Island (Canada): Evidence for Deep Mantle Magmatic Activity Linked to Supercontinent Cycles. Journal of Petrology 55 (10), 2003–2042. https://doi.org/10.1093/petrology/egu048.

58. Tappe S., Romer R.L., Stracke A., Steenfelt A., Smart K.A., Muehlenbachs K., Torsvik T.H. 2017. Sources and Mobility of Carbonate Melts beneath Cratons, with Implications for Deep Carbon Cycling, Metasomatism and Rift Initiation. Earth and Planetary Science Letters, 466, 152–167. https://doi.org/10.1016/j.epsl.2017.03.011.

59. Vrublevskii V.V., Gertner I.F., Tishin P.A., Reverdatto V.V., Izokh A.E., Yudin D.S., 2011. Neoproterozoic Carbonatite Magmatism of the Yenisei Ridge, Central Siberia: 40Ar/39Ar Geochronology of the Penchenga Rock Complex. Doklady Earth Sciences 437, 443–448. https://doi.org/10.1134/S1028334X11040088.

60. Vrublevskii V.V., Pokrovskii B.G., Zhuravlev D.Z., Anoshin G.N., 2003. Composition and Age of the Penchenga Linear Carbonatite Complex, Yenisei Range. Petrology 11 (2), 130–146.

61. Warr L.N., 2021. IMA–CNMNC Approved Mineral Symbols. Mineralogical Magazine 85 (3), 291–320. https://doi.org/10.1180/mgm.2021.43.

62. Watson E.B., Wark D.A., Thomas J.B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology 151, 413–433. https://doi.org/10.1007/s00410-006-0068-5.

63. Yarmolyuk V.V., Kovalenko V.I., Nikiforov A.V., Sal’nikova E.B., Kotov A.B., Vladykin N.V., 2005. Late Riphean Rifting and Breakup of Laurasia: Data on Geochronological Studies of Ultramafic Alkaline Complexes in the Southern Framing of the Siberian Craton. Doklady Earth Sciences 404 (7), 1031–1036.


Review

For citations:


Prokopyev I.R., Doroshkevich A.G., Varchenko M.D., Semenova D.V., Izbrodin I.A., Kruk M.N. MINERALOGY AND ZIRCON AGE OF CARBONATITES OF THE SREDNYAYA ZIMA COMPLEX (EASTERN SAYAN). Geodynamics & Tectonophysics. 2024;15(2):0749. (In Russ.) https://doi.org/10.5800/GT-2024-15-2-0749. EDN: MHGVEB

Views: 645


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)