Preview

Geodynamics & Tectonophysics

Advanced search

METHODOLOGY OF COSEISMIC DISPLACEMENTS COMBINATION OBTAINED BY DATA STEMMING FROM HETEROGENEOUS GEODETIC NETWORKS: ON THE EXAMPLE OF THE GREAT 2011 TOHOKU EARTHQUAKE, Mw 9.1

https://doi.org/10.5800/GT-2024-15-1-0736

EDN: HQCNAT

Abstract

The strongest earthquakes with magnitudes Mw 8–9 generate coseismic displacements of the Earth’s crust, covering entire regions of the world. These displacements can be recorded using observations provided by the independent geodetic GNSS networks. The data of these networks are processed using different algorithms and methods for analyzing satellite observations, methods for calculating the coseismic shift, and different implementations of the coordinate system. These factors lead to "inconsistency" of the combined displacement fields and the appearance of additional errors in the results of coseismic effects modeling. The paper proposes a method for combining the fields of coseismic displacements of the Earth's crust, obtained in the far-field zone from the source according to data from heterogeneous GNSS networks. The results of applying the proposed method are demonstrated by the example of combining the fields of coseismic displacements in China, South Korea and the south of the Far East of the Russian Federation, initiated by the catastrophic Tohoku earthquake on March 11, 2011, Mw 9.1, as well as the calculation and analysis of the unified field of coseismic deformations of the region under study.

About the Authors

N. V. Shestakov
Far Eastern Federal University; Institute for Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

10 Ajax Bay, Vladivostok; 7 Radio St, Vladivostok, 690041



М. D. Gerasimenko
Institute for Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

7 Radio St, Vladivostok, 690041



А. К. Kishkina
Far Eastern Federal University
Russian Federation

10 Ajax Bay, Vladivostok, 690922



V. G. Bykov
Kosygin Institute of Tectonics and Geophysics, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

65 Kim Yu Chen St, Khabarovsk 680000



V. V. Pupatenko
Kosygin Institute of Tectonics and Geophysics, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

65 Kim Yu Chen St, Khabarovsk 680000



А. S. Prytkov
Institute of Marine Geology and Geophysics, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

1B Nauki St, Yuzhno-Sakhalinsk 693022



N. F. Vasilenko
Institute of Marine Geology and Geophysics, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

1B Nauki St, Yuzhno-Sakhalinsk 693022



V. S. Zhizherin
Institute of Geology and Nature Management, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

1 Relochniy ln, Blagoveshchensk 675000



S. V. Yakovenko
Il'ichev Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

43 Baltiyskaya St, Vladivostok 690041



References

1. Altamimi Z., Sillard P., Boucher C., 2002. ITRF2000: A New Release of the International Terrestrial Reference Frame for Earth Science Applications. Journal of Geophysical Research: Solid Earth 121 (В10), ETG 2-1–ETG 2-19. https://doi.org/10.1029/2001JB000561.

2. Ashurkov S.V., Sankov V.A., Serov M.A., Luk’yanov P.Y., Grib N.N., Bordonskii G.S., Dembelov M.G., 2016. Evaluation of Present-Day Deformations in the Amurian Plate and Its Surroundings, Based on GPS Data. Russian Geology and Geophysics 57 (11), 1626–1634. https://doi.org/10.1016/j.rgg.2016.10.008.

3. Baek J., Shin Y.-H., Na S.-H., Shestakov N.V., Park P.-H., Cho S., 2012. Coseismic and Postseismic Crustal Deformations of the Korean Peninsula Caused by the 2011 Mw 9.0 Tohoku Earthquake, Japan, from Global Positioning System Data. Terra Nova 24 (4), 295–300. https://doi.org/10.1111/j.1365-3121.2012.01062.x.

4. Banerjee P., Pollitz F., Burgmann R., 2005. The Size and Duration of the Sumatra-Andaman Earthquake from Far-Field Static Offsets. Science 308 (5729), 1769–1772. https://doi.org/10.1126/science.1113746.

5. Bird P., 2003. An Updated Digital Model of Plate Boundaries. Geochemistry Geophysics Geosystems 4 (3), 1027. https://doi.org/10.1029/2001GC000252.

6. Blewitt G., Hammond W.C., Kreemer C., Plag H-P., Stein S., Okal E., 2009. GPS for Real-Time Earthquake Source Determination and Tsunami Warning Systems. Journal of Geodesy 83, 335–343. https://doi.org/10.1007/s00190-008-0262-5.

7. Bykov V.G., Shestakov N.V., Gerasimenko M.D., Sorokin A.A., Konovalov A.V., Prytkov A.S., Vasilenko N.F., Safonov D.A. et al., 2020. Unified Observation Network for Geodynamic Monitoring in FEB RAS: Formation, 10 Years of Development and Major Achievements. Vestnik of Far Eastern Branch of Russian Academy of Sciences 3, 5–24 (in Russian) https://doi.org/10.37102/08697698.2020.211.3.001.

8. Fratarcangeli F., Savastano G., D’Achille M.C., Mazzoni A., Crespi M., Riguzzi F., Devoti R., Pietrantonio G., 2018. VADASE Reliability and Accuracy of Real-Time Displacement Estimation: Application to the Central Italy 2016 Earthquakes. Remote Sensing 10 (8), 1201. https://doi.org/10.3390/rs10081201.

9. Hashimoto M., Choosakul N., Hashizume M., Takemoto S., Takiguchi H., Fukuda Y., Fujimori K., 2006. Crustal Deformations Associated with the Great Sumatra-Andaman Earthquake Deduced from Continuous GPS Observation. Earth Planets Space 58, 127–139. https://doi.org/10.1186/BF03353369.

10. Heki K., Miyazaki S., Takahashi H., Kasahara M., Kimata F., Miura S., Vasilenko N.F., Ivashchenko A., An K., 1999. The Amurian Plate Motion and Current Plate Kinematics in Eastern Asia. Journal of Geophysical Research: Solid Earth 104 (B12), 29147–29155. https://doi.org/10.1029/1999JB900295.

11. Hofmann-Wellenhof B., Lichtenegger H., Walse E., 2008. GNSS – Global Navigation Satellite Systems. GPS, GLONASS, GALILEO and more. Springer-Verlag, Vienna, 518 p. https://doi.org/10.1007/978-3-211-73017-1.

12. Iinuma T., Ohzono M., Ohta Y., Miura S., 2011. Cosesmic Slip Distribution of the 2011 off the Pacific Coast of Tohoku Earthquake (M 9.0) Estimated Based on GPS Data − Was the Asperity in Miyagi-Oki Ruptured? Earth, Planets and Space 63, 24. https://doi.org/10.5047/eps.2011.06.013.

13. Levin V.E., Bakhtiarov V.F., Titkov N.N., Serovetnikov S.S., Magus’kin M.A., Lander A.V., 2014. Contemporary Crustal Movements (CCMS) in Kamchatka. Izvestiya, Physics of the Solid Earth 50, 732–751. https://doi.org/10.1134/S1069351314060044.

14. Lukhnev A.V., Sankov V.A., Miroshnichenko A.I., Ashurkov S.V., Calais E., 2010. GPS Rotation and Strain Rates in the Baikal–Mongolia Region. Russian Geology and Geophysics 51 (7), 785–793. https://doi.org/10.1016/j.rgg.2010.06.006.

15. Pollitz F.F., Bürgmann R., Banerjee P., 2011. Geodetic Slip Model of 2011 M9.0 Tohoku Earthquake. Geophysical Research Letters, 38 (7), L00G08. https://doi.org/10.1029/2011GL048632.

16. Shen Z.-K., Jackson D.D., Ge B.X., 1996. Crustal Deformation across and beyond the Los Angeles Basin from Geodetic Measurements. Journal of Geophysical Research: Solid Earth 101 (В12), 27957–27980. https://doi.org/10.1029/96JB02544.

17. Shestakov N.V., Ohzono M., Takahashi H., Gerasimenko M.D., Bykov V.G., Gordeev E.I., Chebrov V.N., Titkov N.N. et al., 2014. Modeling of Coseismic Crustal Movements Initiated by the May 24, 2013, Mw=8.3 Okhotsk Deep Focus Earthquake. Doklady Earth Sciences 457, 976–981. https://doi.org/10.1134/S1028334X1408008X.

18. Shestakov N.V., Takahashi H., Ohzono M., Prytkov A.S., Bykov V.G., Gerasimenko M.D., Luneva M.N., Gerasimov G.N. et al., 2012. Analysis of the Far-Field Crustal Displacements Caused by the 2011 Great Tohoku Earthquake Inferred from Continuous GPS Observations. Tectonophysics 524–525, 76–86. https://doi.org/10.1016/j.tecto.2011.12.019.

19. Takamatsu N., Muramatsu H., Abe S., Hatanaka Y., Furuya T., Kakiage Y., Ohashi K., Kato C., Ohno K., Kawamoto S., 2023. New GEONET Analysis Strategy at GSI: Daily Coordinates of over 1300 GNSS CORS in Japan throughout the Last Quarter Century. Earth Planets Space 75, 49. https://doi.org/10.1186/s40623-023-01787-7.

20. Teza G., Pesci A., Galgaro A., 2008. Grid_Strain and Grid_ Strain3: Software Packages for Strain Field Computation in 2D and 3D Environment. Computers & Geosciences 34 (9), 1142–1153. https://doi.org/10.1016/j.cageo.2007.07.006.

21. Tregoning P., Burgette R., McClusky S.C., Lejeune S., Watson C.S., McQueen H., 2013. A Decade of Horizontal Deformation from Great Earthquakes. Journal of Geophysical Research: Solid Earth 118 (5), 2371–2381. https://doi.org/10.1002/jgrb.50154.

22. Wang M., Li Q., Wang F., Zhang R., Wang Y., Shi H., Zhang P., Shen Z., 2011. Far-Field Coseismic Displacements Associated with the 2011 Tohoku-Oki Earthquake in Japan Observed by Global Positioning System. Chinese Science Bulletin 56, 2419−2424, https://doi.org/10.1007/s11434-011-4588-7.

23. Wang M., Shen Z.K., 2020. Present-Day Crustal Deformation of Continental China Derived from GPS and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth 125 (2), e2019JB018774. https://doi.org/10.1029/2019JB018774.

24. Zonenshain L.P., Savostin L.A., 1981. Geodynamics of the Baikal Rift Zone and Plate Tectonics of Asia. Tectonophysics 76 (1–2), 1–45. https://doi.org/10.1016/0040-1951(81)90251-1.

25.


Review

For citations:


Shestakov N.V., Gerasimenko М.D., Kishkina А.К., Bykov V.G., Pupatenko V.V., Prytkov А.S., Vasilenko N.F., Zhizherin V.S., Yakovenko S.V. METHODOLOGY OF COSEISMIC DISPLACEMENTS COMBINATION OBTAINED BY DATA STEMMING FROM HETEROGENEOUS GEODETIC NETWORKS: ON THE EXAMPLE OF THE GREAT 2011 TOHOKU EARTHQUAKE, Mw 9.1. Geodynamics & Tectonophysics. 2024;15(1):0736. (In Russ.) https://doi.org/10.5800/GT-2024-15-1-0736. EDN: HQCNAT

Views: 508


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)