A MODEL OF THE LATE MESOZOIC AND CENOZOIC THERMOTECTONIC EVOLUTION OF THE PRE-MESOZOIC BASEMENT ROCKS IN SOUTH TUVA
https://doi.org/10.5800/GT-2023-14-6-0729
Abstract
Thermotectonic modeling was performed for the crystalline rocks of South Tuva using the apatite fission-track analysis. Thermotectonic modeling made it possible to visualize the Late Mesozoic and Cenozoic cooling history of the Pre-Mesozoic basement rocks, and to reconstruct the chronology and scale of the denudational processes over the last 125 myr and the evolution of paleorelief of South Tuva over the last 100 myr. The modeling results depicted several Mesozoic-Cenozoic episodes of cooling due to differential denudation and exhumation of the Pre-Mesozoic basement rocks. A differential denudation is related to an asynchronous activation of fault structures controlling the tectonic evolution of South Tuva. It is shown that the Early Cretaceous (~125–100 Ma) activation of the Agar-Dag-Oka thrust fault zone could result from the post-collisional processes after the collision between Siberia and Amuria and/or consecutive collision between the Cimmerian blocks. An intense activation of the Agar-Dag-Oka fault zone in the Late Cretaceous (~100–75 Ma), accompanied by significant basement rock exhumation in the eastern South Tuva to absolute heights of 1200 m, could be caused by the Karakoram-Pamir collision in the south of Eurasia. The Late Cenozoic (25–0 Ma) activation of the main fault zones of South Tuva represents a far-field effect of the Indo-European collision on the southern Eurasian continent. At the same time, there were the maximum basement uplift in the junction zone between the South Tannuola and Ubsunur-Bii-Khem fault zones and the transformation of relief of South Tuva from moderately dissected, with absolute heights of 500 to 1400 m, to modern, with absolute heights of 800 to 2600 m.
Keywords
About the Authors
E. V. VetrovRussian Federation
3 Academician Koptyug Ave, Novosibirsk 630090
N. I. Vetrova
Russian Federation
3 Academician Koptyug Ave, Novosibirsk 630090
References
1. Arzhannikova A.V., Jolivet M., Arzhannikov S.G., Vassallo R., Chauvet A., 2013. The Time of the Formation and Destruction of the Meso-Cenozoic Peneplanation Surface in East Sayan. Russian Geology and Geophysics 54 (7), 685–694. https://doi.org/10.1016/j.rgg.2013.06.004.
2. Berzin N.A., Kungurtsev L.V., 1996. Geodynamic Interpretation of Altai-Sayan Geological Complexes. Russian Geology and Geophysics 37 (1), 63–81 (in Russian)
3. Buslov M.M., 2011. Tectonics and Geodynamics of the Central Asian Fold Belt: The Role of Late Paleozoic Large-Amplitude Strike-Slip Faults. Russian Geology and Geophysics 52 (1), 52–71. https://doi.org/10.1016/j.rgg.2010.12.005.
4. Buslov M.M., 2014. Terrane Tectonics of the Central Asian Orogenic Belt. Geodynamics & Tectonophysics 5 (3), 641–665 (in Russian) https://doi.org/10.5800/GT-2014-5-3-0147.
5. Buslov M.M., Geng H., Travin A.V., Otgonbaatar D., Kulikova A.V., Chen M., Stijn G., Semakov N.N., Rubanova E.S., Abildaeva M.A., Voitishek E.E., Trofimova D.A., 2013. Tectonics and Geodynamics of Gorny Altai and Adjacent Structures of the Altai-Sayan Folded Area. Russian Geology and Geophysics 54 (10), 1250–1271. https://doi.org/10.1016/j.rgg.2013.09.009.
6. Buslov M.M., Watanabe T., Fujiwara Y., Iwata K., Smirnova L.V., Safonova I.Yu., Semakov N.N., Kiryanova A.P., 2004. Late Paleozoic Faults of the Altai Region, Central Asia: Tectonic Pattern and Model of Formation. Journal of the Asian Earth Science 23 (5), 655–671. https://doi.org/10.1016/S1367-9120(03)00131-7.
7. De Grave J., Buslov M.M., Van den Haute P., Metcalf J., Dehandschutter B., McWilliams M.O., 2009. Multi-Method Chronometry of the Teletskoye Graben and Its Basement, Siberian Altai Mountains: New Insights on Its Thermo-Tectonic Evolution. Geological Society of London Special Publications 324, 237–259. https://doi.org/10.1144/SP324.17.
8. De Grave J., De Pelsmaeker E., Zhimulev F.I., Glorie S., Buslov M.M., Van den Haute P., 2014. Meso-Cenozoic Building of the Northern Central Asian Orogenic Belt: Thermotectonic History of the Tuva Region. Tectonophysics 621, 44–59. https://doi.org/10.1016/j.tecto.2014.01.039.
9. De Grave J., Glorie S., Zhimulev F.I., Buslov M.M., Elburg M., Vanhaecke F., Van den Haute P., 2011. Emplacement and Exhumation of the Kuznetsk–Alatau Basement (Siberia): Implications for the Tectonic Evolution of the Central Asian Orogenic Belt and Sediment Supply to the Kuznetsk, Minusa and West Siberian Basins. Terra Nova 23 (4), 248–256. https://doi.org/10.1111/j.1365-3121.2011.01006.x.
10. Didenko А.N., Mossakovsky А.А., Pechersky D.M., Ruzhentsev S.V., Samygin S.G., Kheraskova T.N., 1994. Geodynamics of Paleozoic Oceans of Central Asia. Russian Geology and Geophysics 35 (7–8), 59–75.
11. Dobretsov N.L., 2003. Mantle Plumes and Their Role in the Formation of Anorogenic Granitoids. Russian Geology and Geophysics 44 (12), 1243–1261.
12. Dobretsov N.L., Buslov M.M., 2007. Late Cambrian-Ordovician Tectonics and Geodynamics of Central Asia. Russian Geology and Geophysics 48 (1), 71–82. https://doi.org/10.1016/j.rgg.2006.12.006.
13. Dobretsov N.L., Buslov M.M., Delvaux D., Berzin N.A., Ermikov V.D., 1996. Mesoand Cenozoic Tectonics of the Central Asian Mountain Belt: Effects of Lithospheric Plate Interaction and Mantle Plumes. International Geology Review 38 (5), 430–466. https://doi.org/10.1080/00206819709465345.
14. Dobretsov N.L., Buslov M.M., Vernikovsky V.A., 2003. Neoproterosoic to Early Ordovician Evolution of the Paleo-Asian Ocean: Implications to the Breakup of Rodinia. Gondwana Research 6 (2), 143–159. https://doi.org/10.1016/S1342-937X(05)70966-7.
15. Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., Ivanov A.V., 2013. Late Paleozoic – Mesozoic Subduction-Related Magmatism at the Southern Margin of the Siberian Continent and the 150 Million-Year History of the Mongol-Okhotsk Ocean. Journal of Asian Earth Sciences 62, 79–97. https://doi.org/10.1016/j.jseaes.2012.07.023.
16. Gallagher K., 2012. Transdimensional Inverse Thermal History Modeling for Quantitative Thermochronology. Journal of Geophysical Research: Solid Earth 117 (В2), B02408. https://doi.org/10.1029/2011JB008825.
17. Gallagher K., Brown R.W., 1999. Denudation and Uplift at Passive Margins: The Record on the Atlantic Margin of Southern Africa. Philosophical Transactions of the Royal Society A. Mathematical Physical and Engineering Sciences 357 (1753), 835–859. https://doi.org/10.1098/rsta.1999.0354.
18. Gordienko I.V., 2004. Volcanism in Various Geodynamic Settings of the Central Asian Orogenic Belt. Lithosphere (3), 4–16 (in Russian)
19. Gordienko I.V., 2019. Relationship between Subduction‐Related and Plume Magmatism at the Active Boundaries of Lithospheric Plates in the Interaction Zone of the Siberian Continent and Paleoasian Ocean in the Neoproterozoic and Paleozoic. Geodynamics & Tectonophysics 10 (2), 405–457 (In Russian) https://doi.org/10.5800/GT-2019-10-2-0420.
20. Green O.R., Searle M.P., Corfield R.I., Corfield R.M., 2008. Cretaceous-Tertiary Carbonate Platform Evolution and the Age of the India-Asia Collision along the Ladakh Himalaya (Northwest India). The Journal of Geology 116 (4), 331–353. https://doi.org/10.1086/588831.
21. Haq B.U., Hardenbol J., Vail P.R., 1987. Chronology of Fluctuating Sea Levels since the Triassic. Science 235 (4793), 1156–1167. https://doi.org/10.1126/science.235.4793.1156.
22. Jolivet M., Arzhannikova N., Frolov A.O., Arzhannikov S., Kulagina N., Akulova V., Vassallo R., 2017. Late Jurassic – Early Cretaceous Paleoenvironment Evolution of the Transbaikal Basins (SE Siberia): Implications for the Mongol-Okhotsk Orogeny. Bulletin Societe Geologique de France 188 (1–2), 9. https://doi.org/10.1051/bsgf/2017010.
23. Kapp P., DeCelles P.G., Gehrels G.E., Heizler M., Ding L., 2007. Geological Records of the Lhasa–Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of American Bulletin 119 (7–8), 917–932. https://doi.org/10.1130/B26033.1.
24. Ketcham R.A., 2005. Forward and Inverse Modeling of Low-Temperature Thermochronometry Data. Reviews in Mineralogy and Geochemistry 58 (1), 275–314. https://doi.org/10.2138/rmg.2005.58.11.
25. Ketcham R.A., Carter A., Donelick R.A., Barbarand J., Hurford A.J., 2007. Improved Modeling of Fission-Track Annealing in Apatite. American Mineralogist 92 (5–6), 799–810. https://doi.org/10.2138/am.2007.2281.
26. Kohn B.P., Gleadow A.J.W., Brown R.W., Gallagher K., Lorencak M., Noble W.P., 2005. Visualizing Thermotectonic and Denudation Histories Using Apatite Fission-Track Thermochronology. Reviews in Mineralogy and Geochemistry 58 (1), 527–565. https://doi.org/10.2138/rmg.2005.58.20.
27. Kohn B.P., Gleadow A.J.W., Brown R.W., Gallagher K., O’Sullivan P.B., Foster D.A., 2002. Shaping the Australian Crust over the Last 300 Million Years: Insights from Fission Track Thermotectonic and Denudation Studies of Key Terranes. Australian Journal of Earth Science 49 (4), 697–717. https://doi.org/10.1046/j.1440-0952.2002.00942.x.
28. Kominz M.A., 1984. Oceanic Ridge Volume and Sea-Level Change an Error Analysis. In: J.S. Schlee (Ed.), Interregional Unconformities and Hydrocarbon Accumulation. American Association of Petroleum Geologists, p. 109–127. https://doi.org/10.1306/M36440C9.
29. Lebedev V.I., Cherezov A.M., Kuzhuget K.S., Lebedeva M.F., Lebedeva S.V., Cherezova O.S., Chupikova S.A., 2001. Geological Formations, Deep-Seated Geodynamics and Seismicity of the Inner Asia Terrains (Tuva and Northwestern Mongolia). In: The State and Exploration of Natural Resources of Tuva and Adjacent Regions of Central Asia. Geoecology of Natural Environment and Society. TuvIENR SB RAS, Kyzyl, p. 34–45 (in Russian)
30. Lebedev V.I., Duchkov A.D., Kamenskiy I.L., Chupikova S.A., Rychkova K.M., 2016. Seismogeology and Geotermicа of the Territory of Tuva. Vestnik of Tuva State University. Natural and Agricultural Sciences 2, 112–126 (in Russian)
31. Molnar P., Tapponnier P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science 189 (4201), 419–426. https://doi.org/10.1126/science.189.4201.419.
32. Müller R.D., Sdrolias M., Gaina C., Roest W.R., 2008. Age, Spreading Rates, and Spreading Asymmetry of the World’s Ocean Crust. Geochemistry, Geophysics, Geosystems 9 (4), Q04006. https://doi.org/10.1029/2007GC001743.
33. Novikov I.S., Zhimulev F.I., Vetrov E.V., Savelieva P.Yu., 2019. Mesozoic and Cenozoic Geologic History and Surface Topography of the Northwestern Altai-Sayan Area. Russian Geology and Geophysics 60 (7), 781–792. https://doi.org/10.15372/RGG2019054.
34. Ovsyuchenko A.N., Butanayev Y.V., 2017. Seismic History of the Altai-Sayan Region and the 2011–2012 Earthquakes in Tuva. The New Research of Tuva 1, 162–180 (in Russian) https://doi.org/10.25178/nit.2017.1.11.
35. Pitman W.C., 1978. Relationship between Eustacy and Stratigraphic Sequences of Passive Margins. GSA Bulletin 89 (9), 1389–1403. https://doi.org/10.1130/0016-7606(1978)89<1389:RBEASS>2.0.CO;2.
36. Schwab M., Ratschbacher L., Siebel W., McWilliams M., Minaev V., Lutkov V., Chen F., Stanek K., Nelson B., Frisch F., 2004. Assembly of the Pamirs: Age and Origin of Magmatic Belts from the Southern Tien Shan to the Southern Pamirs and Their Relation to Tibet. Tectonics 23 (4), TC4002. https://doi.org/10.1029/2003TC001583.
37. Sengör A.M.C., Natal’in B.A., Burtman V.S., 1993. Evolution of the Altaid Tectonic Collage and Paleozoic Crustal Growth in Eurasia. Nature 364, 299–307. https://doi.org/10.1038/364299a0.
38. Sklyarov E.V., Mazukabzov A.M., Mel’nikov A.I., 1997. Complexes of Metamorphic Cores of the Cordillera Type. Publishing House of SB RAS, Novosibirsk, 182 p. (in Russian)
39. Sorokin A.A., Zaika V.A., Kovach V.P., Kotov A.B., Xu W., Yang H., 2020. Timing of Closure of the Eastern Mongol – Okhotsk Ocean: Constraints from U-Pb and Hf Isotopic Data of Detrital Zircons from Metasediments along the Dzhagdy Transect. Gondwana Research 81, 58–78. https://doi.org/10.1016/j.gr.2019.11.009.
40. Velichko A.A., 1999. The Common Features of the Cenozoic Landscape and Climate Changes in North Eurasia. In: Climate and Landscape Changes over the Last 65 Ma (Cenozoic: from Paleocene to Holocene). GEOS, Moscow, p. 219–233 (in Russian)
41. Vetrov E.V., 2016. The Mesozoic and Cenozoic Thermotectonic Evolution of the Southeastern Altai from the Apatite Fission-Track Analysis Data. PhD Thesis (Candidate of Geology and Mineralogy). Moscow, 200 p. (in Russian)
42. Vetrov E.V., Buslov M.M., De Grave J., 2016. Evolution of Tectonic Events and Topography in Southeastern Gorny Altai in the Late Mesozoic – Cenozoic (Data from Apatite Fission Track Thermochronology). Russian Geology and Geophysics 57 (1), 95–110. https://doi.org/10.1016/j.rgg.2016.01.007.
43. Vetrov E.V., Chernykh A.I., Babin G.A., 2019. Early Paleozoic Granitoid Magmatism in the East Tannu-Ola Sector of the Tuvinian Magmatic Belt: Geodynamic Setting, Age, and Metallogeny. Russian Geology and Geophysics 60 (5), 492–513, https://doi.org/10.15372/RGG2019047.
44. Vetrov E.V., De Grave J., Kotler P.D., Kruk N.N., Zhigalov S.V., Babin G.A., Fedoseev G.S., Vetrova N.I., 2021a. Evolution of the Kolyvan-Tomsk Granitoid Magmatism (Central Siberia): Insights into the Tectonic Transition from Post-Collision to Intraplate Settings in the Northwestern Part of the Central Asian Orogenic Belt. Gondwana Research 93, 26–47. https://doi.org/10.1016/j.gr.2021.01.008.
45. Vetrov E.V., De Grave J., Vetrova N.I., 2022. The Tectonic Evolution Paleozoic Tannuola Terrane of Tuva in the Mesozoic and Cenozoic: Data of Fission-Track Thermochronology of Apatite. Geotectonics 56, 471–485 https://doi.org/10.1134/S0016852122040094.
46. Vetrov E.V., De Grave J., Vetrova N.I., Zhimulev F.I., Nachtergaele S., Van Ranst G., Mikhailova P.I., 2020. Tectonic History of the South Tannuol Fault Zone (Tuva Region of the Northern Central Asian Orogenic Belt, Russia): Constraints from Multi-Method Geochronology. Minerals 10 (1), 56. https://doi.org/10.3390/min10010056.
47. Vetrov E.V., De Grave J., Vetrova N.I., Zhimulev F.I., Nachtergaele S., Van Ranst G., Mikhailova P.I., 2021b. Tectonic Evolution of the SE West Siberian Basin (Russia): Evidence from Apatite Fission Track Thermochronology of Its Exposed Crystalline Basement. Minerals 11 (6), 604. https://doi.org/10.3390/min11060604.
48. Vladimirov V.G., Vladimirov A.G., Gibsher A.S., Travin A.V., Rudnev S.N., Shemelina I.V., Barabash N.V., Savinykh Ya.V., 2005. Model of the Tectonometamorphic Evolution for the Sangilen Block (Southeastern Tuva, Central Asia) as a Reflection of the Early Caledonian Accretion-Collision Tectogenesis. Doklady Earth Sciences 405, 1159–1165.
49. Wagner G.A., Van den Haute P., 1992. Fission Track-Dating. Springer, Dordrecht, 285 p. https://doi.org/10.1007/978-94-011-2478-2.
50. Wang B., Cluzel D., Shu L., Faure M., Charvet J., Chen Y., Meffre S., de Jong K., 2009. Evolution of Calc-Alkaline to Alkaline Magmatism through Carboniferous Convergence to Permian Transcurrent Tectonics, Western Chinese Tianshan. International Journal of Earth Sciences 98, 1275–1298. https://doi.org/10.1007/s00531-008-0408-y.
51. Wilhem C., Windley B.F., Stampfli G.M., 2012. The Altaids of Central Asia: A Tectonic and Evolutionary Innovative Review. Earth-Science Reviews 113 (3–4), 303–341. https://doi.org/10.1016/j.earscirev.2012.04.001.
52. Windley B.F., Alexeiev D., Xiao W., Kröner A., Badarch G., 2007. Tectonic Models for the Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society of London 164 (1), 31–47. https://doi.org/10.1144/0016-76492006-022.
53. Xiao W., Windley F., Allen B., Han C., 2013. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Research 23 (4), 1316–1341. https://doi.org/10.1016/j.gr.2012.01.012.
54. Yang Y.-T., Song C.-C., He S., 2015. Jurassic Tectonostratigraphic Evolution of the Junggar Basin, NW China: A Record of Mesozoic Intraplate Deformation in Central Asia. Tectonics 34 (1), 86–115. https://doi.org/10.1002/2014TC003640.
55. Yarmolyuk V.V., Lebedev V.V., Sugorakova A.M., 2001. The Eastern Tuva Region of Recent Volcanism in Central Asia: Periods, Products and Types of Volcanic Activity. Journal of Volcanology and Seismology 3, 3–32 (in Russian)
56. Yin A., Harrison T.M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Earth and Planetary Sciences Annual Review 28, 211–280. https://doi.org/10.1146/annurev.earth.28.1.211.
57. Zhimulev F.I., Vetrov E.V., Novikov I.S., Van Ranst G., Nachtergaele S., Dokashenko S.A., De Grave J., 2021. Mesozoic Intracontinental Orogeny in the Tectonic History of the Kolyvan’–Tomsk Folded Zone (Southern Siberia): A Synthesis of Geological Data and Results of Apatite Fission Track Analysis. Russian Geology and Geophysics 62 (9), 1006–1020. https://doi.org/10.2113/RGG20204172.
58. Zhu D.-C., Li S.-M., Cawood P.A., Wang Q., Zhao Z.-D., Liu S.-A., Wang L.-Q., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos 245, 7–17. https://doi.org/10.1016/j.lithos.2015.06.023.
59. Zhu D.-C., Zhao Z.D., Niu Y., Dilek Y., Hou Z.Q., Mo X.X., 2013. The Origin and Precenozoic Evolution of the Tibetan Plateau. Gondwana Research 23 (4), 1429–1454. https://doi.org/10.1016/j.gr.2012.02.002.
60. Zonenshayn L.P., Kuzmin M.I., Natapov L.M., 1990. Tectonics of Lithospheric Plates of the USSR. Book 1. Nedra, Moscow, 328 p. (in Russian) [Зоненшайн Л.П., Кузьмин М.И., Натапов Л.М. Тектоника литосферных плит территории СССР. М.: Недра, 1990. Кн. 1. 328 с.].
61. Zorin Y., 1999. Geodynamics of the Western Part of the Mongolia-Okhotsk Collisional Belt, Trans-Baikal Region (Russia) and Mongolia. Tectonophysics 306 (1), 33–56. https://doi.org/10.1016/S0040-1951(99)00042-6.
Review
For citations:
Vetrov E.V., Vetrova N.I. A MODEL OF THE LATE MESOZOIC AND CENOZOIC THERMOTECTONIC EVOLUTION OF THE PRE-MESOZOIC BASEMENT ROCKS IN SOUTH TUVA. Geodynamics & Tectonophysics. 2023;14(6):0729. https://doi.org/10.5800/GT-2023-14-6-0729