Preview

Geodynamics & Tectonophysics

Advanced search

MODELING OF THE LITHOSPHERE IN THE WHITE SEA REGION USING DECOMPOSITION OF ANOMALOUS GRAVITATIONAL AND MAGNETIC FIELDS

https://doi.org/10.5800/GT-2023-14-5-0720

Abstract

The research area includes the White Sea and adjacent land located in the junction zone of the eastern part of the Fennoscandian Shield and the Russian Plate. The purpose of the study is to construct a model of the lithospheric structure of the region using decomposition of anomalous gravitational and magnetic fields and inverse problem solving for components of gravity and magnetic fields, respectively. The decompositions of the fields were provided by the singular spectral method in the software package "R 4.3.1". The inverse problems were solved using the programs of the "Integro" complex. The components of the fields help to identify and analyze buried geological structures. The rift system of the White Sea is most clearly represented by the fourth component of the gravitational and magnetic fields. The positions of density and magnetic inhomogeneities of the Earth’s crust corresponding the components of the fields have been determined. The component model is compared with the seismic density and magnetic models of the lithosphere along the 3-AР geotraverse (Kem – White Sea Throat).

About the Authors

B. Z. Belashev
Institute of Geology, Karelian Research Centre of the Russian Academy of Sciences
Russian Federation

11 Pushkinskaya St, Petrozavodsk 185910



L. I. Bakunovich
Institute of Geology, Karelian Research Centre of the Russian Academy of Sciences
Russian Federation

11 Pushkinskaya St, Petrozavodsk 185910



N. V. Sharov
Institute of Geology, Karelian Research Centre of the Russian Academy of Sciences
Russian Federation

11 Pushkinskaya St, Petrozavodsk 185910



References

1. Aplonov S.V., Fedorov D.L. (Eds), 2006. Geodynamics and Possible Oil and Gas Potential of the Mezensk Sedimentary Basin. Nauka, Saint Petersburg, 319 p. (in Russian)

2. Baluev A.S., Brusilovsky Yu.V., Ivanenko A.N., 2018. The Crustal Structure of Onega-Kandalaksha Paleorift Identified by Complex Analysis of the Anomalous Magnetic Field of the White Sea. Geodynamics & Tectonophysics 9 (4), 1293–1312 (in Russian) https://doi.org/10.5800/GT-2018-9-4-0396.

3. Baluev А.S., Kolodyazhny S.Yu., Terekhov Е.N., 2021. Comparative Tectonics of the White Sea Paleorift System and Other Continental Rifting Systems. Lithosphere 21 (4), 469–490 (in Russian) https://doi.org/10.24930/1681-9004-2021-21-4-469-490.

4. Baluev А.S., Moralev V.М., Glukhovskii М.Z., Przhijalgovskii E.S., Terekhov E.N., 2000. Tectonic Evolution and Magmatism of the Belomorian Rift System. Geotectonics 34 (5), 367–379.

5. Baluev A.S., Zhuravlev V.A., Przhiyalgovskii E.S., 2009. New Data on Structure of the Central Part of the White Sea Paleorift System. Doklady Earth Sciences 427, 891–896. https://doi.org/10.1134/S1028334X09060014.

6. Belashev B., Bakunovich L., Sharov N., Nilov M., 2020. Seismic Density Model of the White Sea’s Crust. Geosciences 10 (12), 492. https://doi.org/10.3390/geosciences10120492.

7. Cheremisina Ye.N., Finkelstein M.Ya., Lyubimova A.V., 2018. GIS INTEGRO – Import Substitution Software for Geological and Geophysical Tasks. Geoinformatics 3, 8–17 (in Russian)

8. Diuk V.A., Komashinsky V.I., Malygin I.G., 2018. Investigation of the Empirical Mode Decomposition Method in the Scenario of Acoustic Emission Signal Analysis. Information and Space 4, 50–55 (in Russian)

9. Dolgal А.S., Khristenko L.А., 2017. Application of Empirical Mode Decomposition in Processing Geophysical Data. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering 328 (1), 100–108 (in Russian)

10. Elsner J.B., Tsonis A.A., 1996. Singular Spectrum Analysis: A New Toolin Time Series Analysis. Plenum Press, New York, 164 p. https://doi.org/10.1007/978-1-4757-2514-8.

11. Gantmakher F.R., 2010. Matrix Theory. Fizmatlit, Мoscow, 560 p. (in Russian)

12. Gavrilov A., 2013. Correlation Image Processing in Technical Vision Systems (in Russian) Available from: https://pandia.ru/text/79/389/25136.php (Last Accessed November 15, 2022).

13. Golyandina N., Korobeynikov A., Shlemov A., Usevich K., 2015. Multivariate and 2D Extensions of Singular Spectrum Analysis with the Rssa Package. Journal of Statistical Software 67 (2), 1–78. https://doi.org/10.18637/jss.v067.i02.

14. Huang N.E., Samuel S.S.P. (Eds), 2005. Hilbert–Huang Transform and Its Applications. World Scientific Publishing Co, Singapore, 323 p. https://doi.org/10.1142/5862.

15. Kalinin D.F., Yanovskaya Yu.А., Dolgal А.S., 2019. Results of the Profile Complex Interpretation of Geopotential Fields through Empirical Mode Decomposition (EMD) Aimed at Oil-and-Gas Occurrence Prospects Assessment. Geophysics 1, 2–12 (in Russian)

16. Kazanin G.S., Zhuravlev V.A., Pavlov S.P., 2006. Structure of the Sedimentary Cover and Petroleum Capacities of the White Sea. Drilling and Oil 2, 26–28 (in Russian)

17. Kazmin V.G., Byakov А.F., 1997. Continental Rifts: The Structural Control of Magmatism and Continental Breakup. Geotectonics 31 (1), 16–26.

18. Kearey Ph., Klepeis K.A., Vine F.J., 2009. Global Tectonics. Wiley-Blackwell, 482 p.

19. Kheraskova T.N., Sapozhnikov R.B., Volozh Yu.A., Antipov M.P., 2006. Geodynamics and Evolution of the Northern East European Platform in the Late Precambrian as Inferred from Regional Seismic Profiling. Geotectonics 6, 434–449. https://doi.org/10.1134/S0016852106060021.

20. Khutorskoy M.D., Akhmetzyanov V.R., Ermakov A.V., Leonov Yu.G., Podgornykh L.V., Polyak B.G., Sukhoi E.A., Tsybulya L.A., 2013. Geothermy of the Arctic Seas. GEOS, Moscow, 238 p. (in Russian)

21. Komarov A.G., 1965. Oceanic Ridges and Rift Structure. Geological Nature of Magnetic and Gravitational Anomalies above the Rift Valley. Priroda 7, 95–98 (in Russian)

22. Korotchenko R.A., Semchenko A.N., Yaroshchuk I.O., 2013. Application of Multidimensional EOF Analysis in Geoinformatics. Digital Signal Processing 3, 17–20 (in Russian)

23. Kutinov Yu.G., 2021. Modern Geodynamic Regime of the Arctic Crustal Segment and Oil Formation. Research and Publishing Center "Sociosphere", Penza, 281 p. (in Russian)

24. Lisitsyn A.P., Nemirovskaya I.A., Shevchenko V.P., Vorontsova V.G., 2017. The White Sea System. Vol. 4. The Processes of Sedimentation, Geology and History. Nauchny Mir, Moscow, 1030 p. (in Russian)

25. Mitsyn S.V., Ososkov G.А., 2016. Finite Difference Method for Numerical Extrapolation of Grid Models of Geophysical Fields. Geoinformatics 3, 29–34 (in Russian)

26. Navara A., Simoncini V., 2010. A Guide to Empirical Orthogonal Functions for Climate Data Analysis. Springer, Dordrecht, 152 p. https://doi.org/10.1007/978-90-481-3702-2.

27. Nilov М.Yu., Bakunovich L.I., Sharov N.V., Belashev B.Z., 2021. 3D Magnetic Crustal Model of the White Sea and Adjacent Areas. Arctic Ecology and Economy 11 (3), 375–385 (in Russian) https://doi.org/10.25283/2223-4594-2021-3-375-385.

28. Priezzhev I.I., 2005. Constructing the Distribution of Physical Environment Parameters on the Basis of Gravity Prospecting and Magnetometric Data. Geophysics 3, 46– 51 (in Russian)

29. Raznitsin Yu.N., Gogonenkov G.N., Zagorovsky Yu.A., Trofimov V.A., Fedonkin M.A., 2020. Serpentinization of Mantle Peridotites as the Main Source of Deep Hydrocarbons of the West Siberian Oil and Gas Basin. Bulletin of Kamchatka Regional Association "Educational-Scientific Center". Earth Sciences 45 (1), 66–88 (in Russian) https://doi.org/10.31431/1816-5524-2020-145-66-88.

30. Sharov N.V. (Ed.), 2022. Lithospheric Structure and Dynamics of the White Sea Region. KarRC RAS, Petrozavodsk, 239 p. (in Russian)

31. Sharov N.V., Bakunovich L.I., Belashev B.Z., Nilov М.Yu., 2020a. Velocity Structure and Density Heterogeneities of the White Sea’s Earth Crust. Arctic: Ecology and Economy 4 (40), 43–53 (in Russian) https://doi.org/10.25283/2223-4594-2020-4-43-53.

32. Sharov N.V., Bakunovich L.I., Belashev B.Z., Zhuravlev V.A., Nilov M.Yu., 2020b. Geological-Geophysical Models of the Crust for the White Sea Region. Geodynamics & Tectonophysics 11 (3), 566–582 (in Russian) https://doi.org/10.5800/GT-2020-11-3-0491.

33. Sharov N.V., Slabunov A.I., Isanina E.V., Krupnova N.A., Roslov U.V., Chipzova N.I., 2010. Seismological Cross-Section of the Earth’s Crust along the Profile DSS – CMP "Land – Sea" Kalevala – Kem' – the White Sea Neck. Geophysical Journal 32 (5), 21–34 (in Russian)

34. State Geological Map of the Russian Federation, 2009a. Baltic Series. Scale 1:1000000. Sheet Q-(35), 36 (Apatity). Explanatory Note. VSEGEI, Saint Petersburg, 487 p. (in Russian)

35. State Geological Map of the Russian Federation, 2009b. Baltic Series. Scale 1:1000000. Sheet Q-37 (Arkhangelsk). Explanatory Note. VSEGEI, Saint Petersburg, 338 p. (in Russian)

36. State Geological Map of the Russian Federation, 2009c. Mezen series. Scale 1:1000000. Sheet Q-38 (Mezen). Explanatory Note. VSEGEI, Saint Petersburg, 350 p. (in Russian)

37. Statistics Toolbox for Use with Matlab, 2005. User’s Guide. Version 5. Math Works, 912 p.

38. Stepanov V.S., Stepanova A.V., 2007. Basic and Ultrabasic Rocks of the Razostrov Island, the White Sea. In: Geology and Minerals of Karelia. Vol. 10. KarRC RAS, Petrozavodsk, p. 16–26 (in Russian) [Степанов В.С., Степанова А.В. Основные и ультраоснвные породы Разострова, Белое море // Геология и полезные ископаемые Карелии. Петрозаводск: КарНЦ РАН, 2007. Вып. 10. C. 16–26].

39. Tevelev Ark.V., Fedorovsky А.S., 2016. Transfer Zones in the Baikal Rift Structure. In: Tectonics, Geodynamics and Ore Formation of Fold Belts and Platforms. Proceedings of XLVIII Tectonic Conference (February 1–6, 2016). Vol. 2. GEOS, Moscow, p. 214–218 (in Russian)

40. Tsibulua L.A., Levashkevich V.G., 1992. Terrestrial Heat Flow in the Barents Sea Region. KSC RAS, Apatity, 115 p. (in Russian)

41. Wasilewski P.J., Mayhew M.A., 1992. The Moho as a Magnetic Boundary Revisited. Geophysical Research Letters 19 (2), 2259–2262. https://doi.org/10.1029/92GL01997.

42. Zhuravlev V.A., 2007. The Crustal Structure of the White Sea Region. Prospect and Protection of Mineral Resources 9, 22–26 (in Russian)


Review

For citations:


Belashev B.Z., Bakunovich L.I., Sharov N.V. MODELING OF THE LITHOSPHERE IN THE WHITE SEA REGION USING DECOMPOSITION OF ANOMALOUS GRAVITATIONAL AND MAGNETIC FIELDS. Geodynamics & Tectonophysics. 2023;14(5):0720. https://doi.org/10.5800/GT-2023-14-5-0720

Views: 388


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)