Preview

Геодинамика и тектонофизика

Расширенный поиск

ГЕНЕЗИС ГРАНАТ-ПИРОКСЕНОВЫХ СИЕНИТОВ (СВЯТОНОСИТОВ) МАЛОБЫСТРИНСКОГО МАССИВА (СЛЮДЯНСКИЙ КОМПЛЕКС, ЮЖНОЕ ПРИБАЙКАЛЬЕ): РЕЗУЛЬТАТЫ ГЕОХИМИЧЕСКИХ И ИЗОТОПНЫХ ИССЛЕДОВАНИЙ

https://doi.org/10.5800/GT-2023-14-5-0716

Полный текст:

Аннотация

Исследованы сиениты и святоноситы (андрадитсодержащие сиениты) Малобыстринского массива слюдянского комплекса (Южное Прибайкалье, Сибирь), а также крупная дайка монцонитов, по возрасту и составу сходная с породами рассматриваемого массива. Исследованные породы относятся к ряду существенно железистых и метаглиноземистых с индексом ASI ниже 1. Породы характеризуются содержанием SiO2 49–65 мас. % и суммой щелочей K2O+Na2O до 12 мас. %, MgO ниже 4 мас. %, высокими содержаниями TiO2 – до 2.5 мас. %, Al2O3 – до 17 мас. %. СаО варьируется в широком интервале значений – от 2.2 до 14.7 мас. %. По микроэлементному спектру породы близки между собой и характеризуются общими трогами Th-U, Nb-Ta и Ti. На спектрах распределения редкоземельных элементов для всего комплекса пород наблюдается очень слабая отрицательная аномалия Eu. Полученный Sm-Nd возраст святоноситов Малобыстринского массива 487.1±6.1 млн лет (СКВО=0.99). Диапазон скорректированных на возраст значений εNd(t) в сиените и монцоните составляет –1.9…–2.8, при εSr(t) 21–30, а в святоноситах εNd(t) –3.8…–4.1 при близких εSr(t) – 26. Модельный возраст для всех рассматриваемых пород TNd(DM) имеет мезопротерозойские значения 1.3–1.4 млрд лет. Основываясь на химическом и Sr-Nd-изотопном составе исследованных магматических пород, можно предположить, что их образование связано с плавлением коровых амфиболитов. Кристаллизация андрадитового граната в сиенитовой магме вызвана контаминацией расплава вмещающими метаморфическими породами слюдянского комплекса.

Об авторах

Е. И. Демонтерова
Институт земной коры СО РАН
Россия

664033, Иркутск, ул. Лермонтова, 128



Л. З. Резницкий
Институт земной коры СО РАН
Россия

664033, Иркутск, ул. Лермонтова, 128



А. В. Иванов
Институт земной коры СО РАН
Россия

664033, Иркутск, ул. Лермонтова, 128



Список литературы

1. Barbarin B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos 46 (3), 605–626. https://doi.org/10.1016/S0024-4937(98)00085-1.

2. Barnes C.G., Frost C.D., Nordgulen Ø., Prestvik T., 2012. Magma Hybridization in the Middle Crust: Possible Consequences for Deep-Crustal Magma Mixing. Geosphere 8 (2), 518–533. https://doi.org/10.1130/GES00730.1.

3. Barnes C.G., Prestvik T., Sundvoll B., Surratt D., 2005. Pervasive Assimilation of Carbonate and Silicate Rocks in the Hortavær Igneous Complex, North-Central Norway. Lithos 80 (1–4), 179–199. https://doi.org/10.1016/j.lithos.2003.11.002.

4. Belichenko V.G., Reznitsky L.Z., Barash I.G., 2003. Tuva-Mongolia Terrane (In the Context of Microcontinents in the Paleoasian Ocean). Russian Geology and Geophysics 44 (6), 531–541.

5. Chappell B.W., White A.J.R., Wyborn D., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology 28 (6), 1111–1138. https://doi.org/10.1093/petrology/28.6.1111.

6. Coulson I.M., Russell J.K., Dipple G.M., 1999. Origins of the Zippa Mountain Pluton: A Late Triassic, Arc-Derived, Ultrapotassic Magma from the Canadian Cordillera. Canadian Journal of Earth Sciences 36 (9), 1415–1434. https://doi.org/10.1139/e99-045.

7. Coulson I.M., Westphal M., Anderson R.G., Kyser T.K., 2007. Concomitant Skarn and Syenitic Magma Evolution at the Margins of the Zippa Mountain Pluton. Mineralogy and Petrology 90, 199–221. https://doi.org/10.1007/s00710006-0178-9.

8. Deer W.A., Howie R.A., Zussman J., 1997. Rock­Forming Minerals. Orthosilicates. Vol. 1A. The Geological Society, London, 629 p.

9. Demonterova E.I., Ivanov A.V., Sklyarov E.V., Pashkova G.V., Klementiev А.M., Tyagun М.L., Vanin V.A., Vologina E.G., Yakhnenko A.S., Yakhnenko M.S., Kozyreva E.A., 2022. 87Sr/86Sr of Lake Baikal: Evidence for Rapid Homogenization of Water. Applied Geochemistry 144, 105420. https://doi.org/10.1016/j.apgeochem.2022.105420.

10. Dobretsov N.L., Buslov M.M., 2007. Late Cambrian-Ordovician Tectonics and Geodynamics of Central Asia. Russian Geology and Geophysics 48 (1), 71–82. https://doi.org/10.1016/j.rgg.2006.12.006.

11. Donskaya T.V., Gladkochub D.P., Fedorovsky V.S., Sklyarov E.V., Cho M., Sergeev S.A., Demonterova E.I., Mazukabzov A.M. et al., 2017. Pre-Collisional (>0.5 Ga) Complexes of the Olkhon Terrane (Southern Siberia) As an Echo of Events in the Central Asian Orogenic Belt. Gondwana Research 42, 243–263. https://doi.org/10.1016/j.gr.2016.10.016.

12. Donskaya T.V., Sklyarov E.V., Gladkochub D.P., Mazukabzov A.M., Sal‘nikova E.B., Kovach V.P., Yakovleva S.Z., Berezhnaya N.G., 2000. The Baikal Collisional Metamorphic Belt. Doklady Earth Sciences 374, 1075–1079.

13. Eisele J., Sharma M., Galer S.J.G., Blichert­Toft J., Devey C.W., Hofmann A.W., 2002. The Role of Sediment Recycling in EM-1 Inferred from Os, Pb, Hf, Nd, Sr Isotope and Trace Element Systematics of the Pitcairn Hotspot. Earth and Planetary Science Letters 196 (3–4), 197–212. https://doi.org/10.1016/S0012-821X(01)00601-X.

14. Eskola P., 1921. On the Igneous Rocks of Sviatoy Noss in Transbaikalia. Overview of the Proceedings of the Finnish Science Society LXIII (1), 100 p.

15. Faure G., 1986. Principles of Isotope Geology. John Wiley & Sons, New York, 589 p.

16. Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology 42 (11), 2033–2048. https://doi.org/10.1093/petrology/42.11.2033.

17. Frost C.D., Frost B.R., 2011. On Ferroan (A-Type) Granitoids: Their Compositional Variability and Modes of Origin. Journal of Petrology 52 (1), 39–53. https://doi.org/10.1093/petrology/egq070.

18. Furman T., Graham D., 1999. Erosion of Lithospheric Mantle beneath the East African Rift System: Geochemical Evidence from the Kivu Volcanic Province. Lithos 48 (1– 4), 237–262. https://doi.org/10.1016/S0024-4937(99)00031-6.

19. Gerdes A., Wörner G., Henk A., 2000. Post-Collisional Granite Generation and Ht-Lp Metamorphism by Radiogenic Heating the Variscan South Bohemian Batholith. Journal of the Geological Society 157 (3), 577–587. https://doi.org/10.1144/jgs.157.3.577.

20. Gladkochub D.P., Donskaya T.V., Mazukabzov A.M., 2015. Palaeozoic ‒ Mesozoic Geology and Tectonics of the Western Transbaikalian Segment of the Central Asian Orogenic Belt. In: A. Kröner (Ed.), Geology, Evolution, Tectonics, and Models. Schweizerbart Science Publishers, Stuttgart, p. 154–183.

21. Grew E.S., Locock A.J., Mills S.J., Galuskina I.O., Galuskin E.V., Hålenius U., 2013. Nomenclature of the Garnet Supergroup. American Mineralogist 98 (4), 785–811. https://doi.org/10.2138/am.2013.4201.

22. Hajialioghli R., Moazzen M., Milke R., 2011. Titanian Garnet in Nepheline Syenite from the Kaleybar Area, East Azerbaijan Province, NW Iran. Central European Geology 54 (3), 295–311. https://doi.org/10.1556/ceugeol.54.2011.3.6.

23. Иваненко В.В., Карпенко М.И., Лицарев М.А. Возраст слюдянских флогопитовых месторождений (данные метода 39Ar–40Ar) // Известия АН СССР. Серия геологическая. 1990. Т. 5. С. 92–98].

24. Iwamori H., Nakamura H., 2015. Isotopic Heterogeneity of Oceanic, Arc and Continental Basalts and Its Implications for Mantle Dynamics. Gondwana Research 27 (3), 1131– 1152. https://doi.org/10.1016/j.gr.2014.09.003.

25. Izbrodin I.A., Doroshkevich A.G., Rampilov M.O., Ripp G.S., Lastochkin E.I., Khubanov V.B., Posokhov V.F., Vladykin N.V., 2017. Age and Mineralogical and Geochemical Parameters of Rocks of the China Alkaline Massif (Western Transbaikalia). Russian Geology and Geophysics 58 (8), 903–921. https://doi.org/10.1016/j.rgg.2017.07.002.

26. Jacobsen S.B., Wasserburg G.J., 1984. Sm­Nd Isotopic Evolution of Chondrites and Achondrites II. Earth and Planetary Science Letters 67 (2), 137–150. https://doi.org/10.1016/0012-821X(84)90109-2.

27. Костюк В.П., Панина Л.И., Жидков А.Я., Орлова М.П., Базарова Т.Ю. Калиевый щелочной магматизм Байкало­-Становой рифтогенной системы. Новосибирск: Наука, 1990. 234 c.].

28. Kotov A.B., Sal’nikova E.B., Kozakov I.K., Yakovleva S.Z., Kovach V.P., Reznitskii L.Z., Vasil’ev E.P., Berezhnaya N.G., 1997. Age of Metamorphism of the Slyudyanka Crystalline Complex, Southern Baikal Area: U-Pb Geochronology of Granitoids. Petrology 5 (4), 338–349.

29. Kovach V., Salnikova E., Wang K­L., Jahn B­M., Chiu H­Y., Reznitskiy L., Kotov A., Iizuka Y., Chung S-L., 2013. Zircon Ages and Hf Isotopic Constraints on Sources of Clastic Metasediments of the Slyudyansky High-Grade Complex, Southeastern Siberia: Implication for Continental Growth and Evolution of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences 62, 18–36. https://doi.org/10.1016/j.jseaes.2011.08.008.

30. Le Maitre R.W. (Ed.), 2002. Igneous Rocks: A Classification and Glossary of Terms. Cambridge University Press, Cambridge, 251 p. https://doi.org/10.1017/CBO9780511535581.

31. Левицкий В.И., Петрова З.И. Эволюция вещества при формировании святоноситов (оз. Байкал) // Геохимия. 1982. № 10. С. 1525–1530].

32. Levitsky V.I., Plusnin G.S., 1991. New Data on Petrology, Geochemistry and Geochronology of the Bystrinskii Massif. Russian Geology and Geophysics 32 (2), 20–25.

33. Литвиновский Б.А. О роли магматического замещения при формировании нефелиновых сиенитов Бамбуйской интрузии (Витимское плоскогорье) // Геология и геофизика. 1967. № 2. С. 123–128].

34. Литвиновский Б.А. Новые данные об условиях формирования святоноситов (на примере гранатовых сиенитов Бамбуйской интрузии, Витимское плоскогорье) // Геология и геофизика. 1973. Т. 14. № 1. С. 42–51].

35. Litvinovsky B.A., Zanvilevich A.N., Ashchepkov I.V., 1986. The Nature of the Sviatonossites of Lake Baykal. International Geology Review 28 (1), 46–61. https://doi.org/10.1080/00206818609466249.

36. Maitra M., David J.S., Bhaduri S., 2011. Melanite Garnet-Bearing Nepheline Syenite Minor Intrusion in Mawpyut Ultramafic­Mafic Complex, Jaintia Hills, Meghalaya. Journal of Earth System Science 120, 1033–1041. https://doi.org/10.1007/s12040-011-0129-7.

37. McCulloch M.T., Chappell B.W., 1982. Nd Isotopic Characteristics of S- and I-Type Granites. Earth and Planetary Science Letters 58 (1), 51–64. https://doi.org/10.1016/0012821X(82)90102-9.

38. McDonough W.F., Sun S.-S., 1995. The Composition of Earth. Chemical Geology 120 (3–4), 223–253. https://doi.org/10.1016/0009-2541(94)00140-4.

39. Mukhopadhyay S., Ray J., Balaram V., Keshav Krishna A., Ghosh B., Mukhopadhyay S., 2011. Geochemistry and Petrogenesis of Syenites and Associated Rocks of the Elagiri Complex, Southern Granulite Terrane, India. Journal of Asian Earth Sciences 42 (6), 1256–1270. https://doi.org/10.1016/j.jseaes.2011.07.011.

40. Neill I., Russell J.K., 1993. Mineralogy and Chemistry of the Rugged Mountain Pluton: A Melanite-Bearing Alkaline Intrusion. In: B. Grant, J.M. Newell (Eds), Geological Fieldwork 1992. A Summary of Field Activities and Current Research. Paper 1993-1. P. 149–157.

41. Nosova A.A., Voznyak A.A., Bogdanova S.V., Savko K.A., Lebedeva N.M., Travin A.V., Yudin D.S., Page L., Larionov A.N., Postnikov A.V., 2019. Early Cambrian Syenite and Monzonite Magmatism in the Southeast of the East European Platform: Petrogenesis and Tectonic Setting. Petrology 27, 329–369. https://doi.org/10.1134/S0869591119040064.

42. Panteeva S.V., Gladkochoub D.P., Donskaya T.V., Markova V.V., Sandimirova G.P., 2003. Determination of 24 Trace Elements in Felsic Rocks by Inductively Coupled Plasma Mass Spectrometry after Lithium Metaborate Fusion. Spectrochimica Acta Part B: Atomic Spectroscopy 58 (2), 341–350. https://doi.org/10.1016/S0584-8547(02)00151-9.

43. Pashkova G.V., Panteeva S.V., Ukhova N.N., Chubarov V.M., Finkelshtein A.L., Ivanov A.V., Asavin A.M., 2019. Major and Trace Elements in Meimechites – Rarely Occurring Volcanic Rocks: Developing Optimal Analytical Strategy. Geochemistry: Exploration, Environment, Analysis 19 (3), 233–243. https://doi.org/10.1144/geochem2017-099.

44. Pearce J.A., 1996. Sources and Setting of Granitic Rocks. Episodes 19 (4), 120–125. https://doi.org/10.18814/epiiugs/1996/v19i4/005.

45. Pearce J.A., Harris N.B.W., Tindle A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology 25 (4), 956– 983. https://doi.org/10.1093/petrology/25.4.956.

46. Петрова З.И., Жидков А.Я., Левицкий В.И., Шмакин В.М. Святоноситы п-­ова Святой Нос (Байкал) // Известия АН СССР. Серия геологическая. 1981. № 3. С. 26–40].

47. Pilet S., Baker M.B., Stolper E.M., 2008. Metasomatized Lithosphere and the Origin of Alkaline Lavas. Science 320 (5878), 916–919. https://doi.org/10.1126/science.1156563.

48. Pin C., Santos Zalduegui J.F., 1997. Sequential Separation of Light Rare-Earth Elements, Thorium and Uranium by Miniaturized Extraction Chromatography: Application to Isotopic Analyses of Silicate Rocks. Analytica Chimica Acta 339 (1–2), 79–89. https://doi.org/10.1016/S00032670(96)00499-0.

49. Плюснин Г.С., Левицкий В.И., Пахольченко Ю.А., Кузнецова С.В. Rb­Sr­возраст и генезис сиенитов Быстринского массива в Юго­-Западном Прибайкалье // Доклады АН СССР. 1991. Т. 316. № 2. С. 440–443].

50. Reznitskii L.Z., Kotov A.B., Sal’nikova E.B., Vasil’ev E.P., Yakovleva S.Z., Kovach V.P., Fedoseenko A.M., 2000. The Age and Time Span of the Origin of Phlogopite and Lazurite Deposits in the Southwestern Baikal Area: U-Pb Geochronology. Petrology 8 (1), 66–76.

51. Reznitskii L.Z., Sandimirova G.P., Pakhol’chenko Yu.A., Kuznetsova S.V., 1999. The Rb-Sr Age of Phlogopite Deposits in Slyudyanka, Southern Baikal Region. Doklady Earth Sciences 367, 711–713.

52. Reznitsky L.Z., Shkol’nik S.I., Levitsky V.I., 2004. Geochemistry of Calcareous-Silicate Rocks of the Kharagol Formation, Southern Baikal Region. Lithology and Mineral Resources 39, 230–242. https://doi.org/10.1023/B:LIMI.0000027609.87200.c9.

53. Rudnick R.L., Gao S., 2003. 3.01 – Composition of the Continental Crust. Treatise on Geochemistry 3, 1–64. https://doi.org/10.1016/B0-08-043751-6/03016-4.

54. Saha A., Ray J., Ganguly S., Chatterjee N., 2011. Occurrence of Melanite Garnet in Syenite and Ijolite–Melteigite Rocks of Samchampi–Samteran Alkaline Complex, Mikir Hills, Northeastern India. Current Science 101 (1), 95–100.

55. Salnikova E.B., Chakhmouradian A.R., Stifeeva M.V., Reguir E.P., Kotov A.B., Gritsenko Y.D., Nikiforov A.V., 2019. Calcic Garnets as a Geochronological and Petrogenetic Tool Applicable to a Wide Variety of Rocks. Lithos 338–339, 141– 154. https://doi.org/10.1016/j.lithos.2019.03.032.

56. Salnikova E.B., Sergeev S.A., Kotov A.B., Yakovleva S.Z., Steiger R.H., Reznitskiy L.Z., Vasil’ev E.P., 1998. U-Pb Zircon Dating of Granulite Metamorphism in the Sludyanskiy Complex, Eastern Siberia. Gondwana Research 1 (2), 195–205. https://doi.org/10.1016/S1342-937X(05)70830-3.

57. Scheibner B., Wörner L., Civetta H., Stosch K., Kronz S.A., 2007. Rare Earth Element Fractionation in Magmatic Ca-Rich Garnets. Contributions to Mineralogy and Petrology 154, 55–74. https://doi.org/10.1007/s00410-006-0179-z.

58. Shkol’nik S.I., Kovach V.P., Reznitsky L.Z., Zagornaya N.Yu., 2004. The Sm-Nd Age of Wollastonite Skarns in the Southern Baikal Region. Russian Geology and Geophysics 45 (8), 975–978.

59. Shkol’nik S.I., Reznitsky L.Z., Barash I.G., 2011. Possibility of Identification of Back-Arc Paleobasins from High-Grade Metamagmatic Rocks: Evidence from Mafic Crystalline Schists of the Slyudyanka Crystalline Complex, South Baikal Region. Geochemistry International 49, 1177–1194. https://doi.org/10.1134/S0016702911100077.

60. Singh J., Johannes W., 1996. Dehydration Melting of Tonalites. Part I. Beginning of Melting. Contributions to Mineralogy and Petrology 125, 16–25. https://doi.org/10.1007/s004100050203.

61. Streckeisen A., 1976. To Each Plutonic Rock Its Proper Name. Earth-Science Reviews 12, 1–33. https://doi.org/10.1016/0012-8252(76)90052-0.

62. Sun S.-S., McDonough W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications 42 (1), 313–345. http://dx.doi.org/10.1144/GSL.SP.1989.042.01.19.

63. Troll V.R., Carrecedo J.C., 2016. The Geology of Fuerteventura. In: The Geology of the Canary Islands. Elsevier, p. 531–582. https://doi.org/10.1016/B978-0-12-809663-5.00008-6.

64. Turkina O.M., Sukhorukov V.P., 2017. Composition and Genesis of Garnet in the Rocks of Paleoproterozoic Gneiss-Migmatite Complex (Sharyzhalgai Uplift, Southwestern Siberian Craton). Russian Geology and Geophysics 58 (6), 674–691. https://doi.org/10.1016/j.rgg.2016.07.004.

65. Васильев Е.П., Резницкий Л.З., Вишняков В.Н., Некрасова Е.А. Слюдянский кристаллический пояс. Новосибирск: Наука, 1981. 198 с.].

66. Vermeesch P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers 9 (5), 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001.

67. Vielzeuf D., Montel J.M., 1994. Partial Melting of Metagreywackes. Part I. Fluid-Absent Experiments and Phase Relationships. Contributions to Mineralogy and Petrology 117, 375–393. https://doi.org/10.1007/BF00307272.

68. Villa I.M., Bièvre P.D., Holden N.E., Renne P.R., 2015. IUPAC-IUGS Recommendation on the Half-Life of 87Rb. Geochimica et Cosmochimica Acta 164, 382–385. https://doi.org/10.1016/j.gca.2015.05.025.

69. Vlach S.R.F., Ulbrich H., Ulbrich M.N.C., Vasconcelos P.M., 2018. Melanite-Bearing Nepheline Syenite Fragments and 40Ar/39Ar Age of Phlogopite Megacrysts in Conduit Breccia from the Poços de Caldas Alkaline Massif (MG/SP), and Implications. Brazilian Journal of Geology 48 (2), 391–402. https://doi.org/10.1590/2317-4889201820170095.

70. Warr L.N., 2021. IMA–CNMNC Approved Mineral Symbols. Mineralogical Magazine 85 (3), 291–320. https://doi.org/10.1180/mgm.2021.43.

71. Weaver B.L., 1991. The Origin of Ocean Island Basalt End-Member Compositions: Trace Element and Isotopic Constraints. Earth and Planetary Science Letters 104 (2–4), 381–397. https://doi.org/10.1016/0012-821X(91)90217-6.

72. Whalen J.B., Currie K.L., Chappell B.W., 1987. A­Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology 95, 407–419. https://doi.org/10.1007/BF00402202.

73. Whittington A.G., Hofmeister A.M., Nabelek P.I., 2009. Temperature-Dependent Thermal Diffusivity of the Earth’s Crust and Implications for Magmatism. Nature 458, 319– 321. https://doi.org/10.1038/nature07818.

74. Willbold M., Stracke A., 2006. Trace Element Composition of Mantle End-Members: Implications for Recycling of Oceanic and Upper and Lower Continental Crust. Geochemistry, Geophysics, Geosystems 7 (4), Q04004. https://doi.org/10.1029/2005GC001005.

75. Willbold M., Stracke A., 2010. Formation of Enriched Mantle Components by Recycling of Upper and Lower Continental Crust. Chemical Geology 276 (3–4), 188–197. https://doi.org/10.1016/j.chemgeo.2010.06.005.

76. Заварицкий А.Н. Изверженные горные породы. М.: Изд-во АН СССР, 1956. 479 с.].

77. Zhang Z., Qin J., Lai S., Long X., Ju Y., Wang X., Zhu Y., Zhang F., 2019. Origin of Late Permian Syenite and Gabbro from the Panxi Rift, SW China: The Fractionation Process of Mafic Magma in the Inner Zone of the Emeishan Mantle Plume. Lithos 346–347, 105160. https://doi.org/10.1016/j.lithos.2019.105160.

78. Zorin Y.A., Belichenko V.G., Turutanov E.K., Mordvinova V.V., Kozhevnikov V.M., Khozbayar P., Tomurtogoo O., Arvisbaatar S., Gao S.S., Davis P.M., 1994. Baikal-Mongolia Transect. Russian Geology and Geophysics 35 (7–8), 78–92.

79. Zorin Yu.A., Sklyarov E.V., Belichenko V.G., Mazukabzov A.M., 2009. Island Arc-Back-Arc Basin Evolution: Implications for Late Riphean – Early Paleozoic Geodynamic History of the Sayan-Baikal Folded Area. Russian Geology and Geophysics 50 (3), 149–161. https://doi.org/10.1016/j.rgg.2008.06.022.


Рецензия

Для цитирования:


Демонтерова Е.И., Резницкий Л.З., Иванов А.В. ГЕНЕЗИС ГРАНАТ-ПИРОКСЕНОВЫХ СИЕНИТОВ (СВЯТОНОСИТОВ) МАЛОБЫСТРИНСКОГО МАССИВА (СЛЮДЯНСКИЙ КОМПЛЕКС, ЮЖНОЕ ПРИБАЙКАЛЬЕ): РЕЗУЛЬТАТЫ ГЕОХИМИЧЕСКИХ И ИЗОТОПНЫХ ИССЛЕДОВАНИЙ. Геодинамика и тектонофизика. 2023;14(5):0716. https://doi.org/10.5800/GT-2023-14-5-0716

For citation:


Demonterova E.I., Reznitsky L.Z., Ivanov A.V. THE GENESIS OF GARNET-PYROXENE SYENITES (SVIATONOSSITES) OF THE MALOBYSTRINSKY MASSIF (SLYUDYANKA COMPLEX, SOUTH BAIKAL REGION): RESULTS OF GEOCHEMICAL AND ISOTOPIC STUDIES. Geodynamics & Tectonophysics. 2023;14(5):0716. (In Russ.) https://doi.org/10.5800/GT-2023-14-5-0716

Просмотров: 133


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)