Preview

Геодинамика и тектонофизика

Расширенный поиск

ВЫСОКОМАГНЕЗИАЛЬНЫЕ ЛАВЫ ДАРИГАНСКОГО ВУЛКАНИЧЕСКОГО ПОЛЯ, ЮГО-ВОСТОЧНАЯ МОНГОЛИЯ: ПЕТРОГЕНЕТИЧЕСКАЯ МОДЕЛЬ МАГМАТИЗМА НА АСТЕНОСФЕРНО-ЛИТОСФЕРНОЙ ГРАНИЦЕ

https://doi.org/10.5800/GT-2012-3-4-0081

Полный текст:

Аннотация

Установлен пространственный контроль высокомагнезиальных вулканических пород (MgO=11.0–15.8 мас. %) линейными зонами протяженностью более 90 км и резкие отличия их химического состава от умеренно-магнезиальных (MgO=3.0–11.0 мас. %) пород, занимающих всю изометричную территорию вулканического поля Дариганга. При сравнительном анализе петрогенных и малых элементов пород этого поля обоснована петрогенетическая модель мантийного магматизма одного глубинного уровня, в отличие от модели контрастных магматических процессов, проявленных на двух глубинных уровнях под вулканическим полем Ханнуоба. С учетом томографических данных о наличии Восточно-Монгольской низкоскоростной аномалии в верхней мантии, предполагается, что магматизм первого типа получил развитие в источниках на границе астеносферы–литосферы и непосредственно нижележащей астеносферы как отражение относительно слабого мантийного потока, вероятно, поднимавшегося с глубины ~250 км. Магматизм второго типа возник в обособленных источниках подлитосферной мантии и границы астеносферы–литосферы как свидетельство изначально сильного мантийного потока, возможно, зародившегося на глубине ~410 км.

Об авторах

Ирина Сергеевна Чувашова
Институт земной коры СО РАН; Иркутский государственный университет
Россия

канд. геол.мин. наук, н.с., 664033, Иркутск, ул. Лермонтова, 128;

геологический факультет, старший преподаватель кафедры динамической геологии



Сергей Васильевич Рассказов
Институт земной коры СО РАН; Иркутский государственный университет
Россия

докт. геол.мин. наук, профессор, зав. лабораторией, 664033, Иркутск, ул. Лермонтова, 128;

геологический факультет, зав. кафедрой динамической геологии



Татьяна Александровна Ясныгина
Институт земной коры СО РАН
Россия

канд. геол.мин. наук, с.н.с.,

664033, Иркутск, ул. Лермонтова, 128



Екатерина Андреевна Михеева
Институт земной коры СО РАН; Иркутский государственный университет
Россия

старший лаборант, 664033, Иркутск, ул. Лермонтова, 128;

геологический факультет, магистрант



Список литературы

1. Basu A.R., Junwen W., Wankang H., Guanghong X., Tatsumoto M., 1991. Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of Eastern China: implications for their origin from suboceanic-type mantle reservoirs. Earth and Planetary Science Letters 105 (1–3), 149–169. http://dx.doi.org/10.1016/0012821X(91)901274.

2. Halliday A.N., Lee D.C., Tommasini S., Davies G.R., Paslick C.R., Fitton J.G., James D.E., 1995. Incompatible trace elements in OIB and MORB and source enrichment in the suboceanic mantle. Earth and Planetary Science Letters 133 (3–4), 379–395. http://dx.doi.org/10.1016/0012821X(95)00097V.

3. Hart S.R., Dunn T., 1993. Experimental cpx/melt partitioning of 24 trace elements. Contributions to Mineralogy and Petrology 113 (1), 1–8. http://dx.doi.org/10.1007/BF00320827.

4. Hauri E.H., Wagner T.P., Grove T.L., 1994. Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chemical Geology 117 (1–4), 149–166. http://dx.doi.org/10.1016/00092541(94)901260.

5. Herzberg C., 2011. Identification of source lithology in the Hawaiian and Canary islands: implications for origins. Journal of Petrology 52 (1), 113–146. http://dx.doi.org/10.1093/petrology/egq075.

6. Hirschmann M.M., Tenner T., Aubaud C., Withers A.C., 2009. Dehydration melting of nominally anhydrous mantle: the primacy of partitioning. Physics of the Earth and Planetary Interiors 176 (1–2), 54–68. http://dx.doi.org/10.1016/j.pepi.2009.04.001.

7. Ionov D.A., Griffin W.L., O’Reilly S.Y. , 1997. Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chemical Geology 141 (3–4), 153–184. http://dx.doi.org/10.1016/S00092541(97)000612.

8. Karato SI., 2011. Water distribution across themantle transition zone and its implications for global material circulation. Earth and Planetary Science Letters 301 (3–4), 413–423. http://dx.doi.org/10.1016/j.epsl.2010.11.038.

9. Karato SI., 2012. On the origin of the asthenosphere. Earth and Planetary Science Letters 321–322, 95–103. http://dx.doi.org/10.1016/j.epsl.2012.01.001.

10. Kepezhinskas V.V., 1979. The Cenozoic Alkaline Basaltoids of Mongolia and Their Deep Inclusions. Nauka, Moscow, 311 p. (in Russian) [Кепежинскас В.В. Кайнозойские щелочные базальтоиды Монголии и их глубинные включения. М.: Наука, 1979. 311 с.].

11. Keshav S., Gudfinnsson G.H., Sen G., Fei Y.W., 2004. High-pressure melting experiments on garnet clinopyroxenites and the alkalic to tholeiitic transition in oceanisland basalts. Earth and Planetary Science Letters 223 (3–4), 365–379. http://dx.doi.org/10.1016/j.epsl.2004.04.029.

12. Kononova V.A., Ivanenko V.V., Karpenko M.I., Arakelyants M.M.,Andreeva E.D.,Pervov V.A., 1988. New data on the K-Ar age of the Cenozoic continental basalts of the Baikal rift system. Doklady AN SSSR 303 (2), 454–457 (in Russian) [Кононова В.А., Иваненко В.В., Карпенко М.И., Аракелянц М.М., Андреева Е.Д., Первов В.А. Новые данные о K–Ar возрасте кайнозойских континентальных базальтов Байкальской рифтовой системы // Доклады АН СССР. 1988. Т. 303. № 2. С. 454–457].

13. Kumagai I., Davaille A., Kuruta K., 2007. Successful and failed plumes: the Icelandic case. Geophysical Research Abstracts 9, 04028.

14. Liu J., Han J., Fyfe W.S., 2001. Cenozoic episodic volcanism and continental rifting in Northeast China and possible link to Japan Sea development as revealed from K–Ar geochronology. Tectonophysics 339 (3–4), 385–401. http://dx.doi.org/10.1016/S00401951(01)001329.

15. Lloyd F.E., Arima M., Edgar A.D., 1985. Partial melting of a phlogopite clinopyroxenite nodule from south–west Uganda: an experimental study bearing on the origin of highly potassic continental rift volcanics. Contributions to Mineralogy and Petrology 91 (4), 321–329. http://dx.doi.org/10.1007/BF00374688.

16. Pertermann M., Hirschmann M.M., 2003. Anhydrous partial melting experiments on MORB-like eclogite: phase relations, phase compositions and mineral–melt partitioning of major elements at 2–3 GPa. Journal of Petrology 44 (12), 2173–2201.

17. Rasskazov S.V., 1985. The Udokan Basaltoids. Nauka, Siberian Branch, Novosibirsk, 142 p. (in Russian) [Рассказов С.В. Базальтоиды Удокана. Новосибирск: Наука. Сибирское отделение, 1985. 142 с.].

18. Rasskazov S.V., 1987. Deep inclusions of the Late Cenozoic melanephelinites of the Southern Central Transbaikalia. Geology and Geophysics 7, 50–60 (in Russian) [Рассказов С.В. Глубинные включения из позднекайнозойских меланефелинитов юга Центрального Забайкалья // Геология и геофизика. 1987. № 7. С. 50–60].

19. Rasskazov S.V., 1993. Magmatism of the Baikal Rift System. VO Nauka, Siberian Publishing House, Novosibirsk, 288 p. (in Russian) [Рассказов С.В. Магматизм Байкальской рифтовой системы. Новосибирск: ВО Наука. Сибирская издательская фирма, 1993. 288 с.].

20. Rasskazov S.V., Boven A., Andre L., Liegeois J.P., Ivanov A.V., Punzalan L., 1997. Evolution of magmatism in the Northeastern Baikal rift system. Petrology 5 (2), 101–120.

21. Rasskazov S.V., Brandt S.B., Brandt I.S., 2010. Radiogenic isotopes in geologic processes. Springer, New York, 306 p.

22. Rasskazov S.V., Chuvashova I.S., Liu J., Meng F., Yasnygina T.A., Fefelov N.N., Saranina E.V., 2011. Proportions of lithospheric and asthenospheric components in Late Cenozoic K and K–Na lavas in Heilongjiang Province, Northeastern China. Petrology 19 (6), 568–600. http://dx.doi.org/10.1134/S0869591111050031.

23. Rasskazov S.V., Chuvashova I.S., Yasnygina T.A., Fefelov N.N., Saranina E.V., 2012. Potassium and Potassium-Soda Volcanic Series in the Cenozoic Asia. GEO Academic Publishing House, Novosibirsk, 310 p. (in Russian) [Рассказов С.В., Чувашова И.С., Ясныгина Т.А., Фефелов Н.Н., Саранина Е.В. Калиевая и калинатровая вулканические серии в кайнозое Азии. Новосибирск: Академическое издательство «ГЕО», 2012. 310 с.].

24. Rasskazov S.V., Logachev N.A., Kozhevnikov V.M., Yanovskaya T.B., 2003. Multistage Dynamics of the Upper Mantle in Eastern Asia: Relationships between Wandering Volcanism and Low-Velocity Anomalies. Doklady Earth Sciences 390 (4), 492–496.

25. Sakhno V.G., Maksimov S.O., Popov V.K., Sandimirova G.P., 2004. Leucite basanites and potassium shonkinites of the Uglovoe Basin, Southern Primorye. Doklady Earth Sciences 399 (9), 1322–1327.

26. Saltykovsky A.Ya., Genshaft Yu.S., 1985. Geodynamics of the Cenozoic Volcanism in the South-Eastern Mongolia. Nauka, Moscow, 135 p. (in Russian) [Салтыковский А.Я., Геншафт Ю.С. Геодинамика кайнозойского вулканизма юго-востока Монголии. М.: Наука, 1985. 135 с.].

27. Şengör A.M., Natal’in B.A., 1996. Paleotectonics of Asia: fragments of a synthesis. In: A. Yin, M. Harrison (Eds.), The tectonic evolution of Asia. V. 21. Cambridge University Press, Cambridge, p. 486–640.

28. Sobolev A.V., Hofmann A.W., Kuzmin D.V., Yaxley G.M., Arndt N.T., Chung S.L., Danyushevsky L.D., Elliott T., Frey F.A., Garcia M.O., Gurenko A.A., Kamenetsky V.S., Kerr A.C., Krivolutskaya N.A., Matvienkov V.V., Nikogosian I.K., Rocholl A., Sigurdsson I.A., Sushchevskaya N.M., Teklay M., 2007. The amount of recycled crust in sources of mantlederived melts. Science 316 (5823), 412–417. http://dx.doi.org/10.1126/science. 1138113.

29. Sobolev A.V., Hofmann A.W., Sobolev S.V., Nikogosian I.K., 2005. An olivin-efree mantle source of Hawaiian shield basalts. Nature 430 (7033), 590–597. http://dx.doi.org/10.1038/nature03411.

30. Song Y., Frey F.A., Zhi H., 1990. Isotopic characteristics of Hannuoba basalts, eastern China: implications for their petrogenesis and the composition of subcontinental mantle. Chemical Geology 88 (1–2), 35–52. http://dx.doi.org/10.1016/00092541(90)90102D.

31. Sun S.S., McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Sounders, M.J. Norry (Eds.), Magmatism in the ocean basins. Geological Society Special Publication, V. 42, p. 313–345. http://dx.doi.org/10.1144/GSL.SP.1989.042.01.19.

32. Syrnev I.P., 1982. East Mongolian Plain. In: Geomorphology of the Mongolian People's Republic. The Joint Soviet-Mongolian Research Expedition. Proceedings, Issue 28. Nauka, Moscow, p. 166–176 (in Russian) [Сырнев И.П. Восточно-Монгольская равнина // Геоморфология Монгольской Народной Республики. Совместная Советско-Монгольская научно-исследовательская экспедиция. Труды, Вып. 28. М.: Наука, 1982. С. 166–176].

33. Tatsumoto M., Basu A.R., Wankang H., Junwen W., Guanghong X., 1992. Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of East China: enriched components EMI and EMII in subcontinental lithosphere. Earth and Planetary Science Letters 113 (1–2), 107–128. http://dx.doi.org/10.1016/0012821X(92)90214G.

34. Tauzin B., Debayle E., Wittingger G., 2010. Seismic evidence for a global lowvelocity layer within the Earth's upper mantle. Nature Geoscience 3 (10), 718–721. http://dx.doi.org/10.1038/ngeo969.

35. Vlodavets V.I., 1955. About some features of the Cenozoic volcanism of the Darigang region in Mongolia. In: Problems of Geology of Asia. Publishing House of the USSR Academy of Sciences, Moscow, V. 2. p. 679–685 (in Russian) [Влодавец В.И. О некоторых чертах кайнозойского вулканизма Даригангской области Монголии // Вопросы геологии Азии. М.: Издательство АН СССР, 1955. Т. 2. С. 679–685].

36. Yanovskaya T.B., Kozhevnikov V.M., 2003. 3D S–wave velocity pattern in the upper mantle beneath the continent of Asia from Rayleigh wave data. Physics of the Earth and Planetary Interiors 138 (3–4), 263–278. http://dx.doi.org/10.1016/S00319201(03)001547.

37. Yasnygina T.A., Rasskazov S.V., Markova M.E., Ivanov A.V., Demonterova E.I., 2003. Determination of trace elements by ICPMS method with application of microwave acid decomposition in volcanic rocks of basic and intermediate composition. In: Applied Geochemistry. Issue 4. Analytical Studies. IMGRE, Moscow, p. 48–56 (in Russian) [Ясныгина Т.А., Рассказов С.В., Маркова М.Е., Иванов А.В., Демонтерова Е.И. Определение микроэлементов методом ICP–MS с применением микроволнового кислотного разложения в вулканических породах основного и среднего состава // Прикладная геохимия. Вып. 4. Аналитические исследования. М.: ИМГРЭ, 2003. С. 48–56].

38. Zhang M., Suddaby P., Thompson R.N., Thirlwall M.F., Menzies M.A., 1995. Potassic rocks in NE China: geochemical constraints on mantle source and magma genesis. Journal of Petrology 36 (5), 1275–1303. http://dx.doi.org/10.1093/petrology/36.5.1393.

39. Zhi X., Song Y., Frey F.A., Feng J., Zhai M., 1990. Geochemistry of Hannuoba basalts, Eastern China: constraints on the origin of continental alkalic and tholeiitic basalt. Chemical Geology 88 (1–2), 1–33. http://dx.doi.org/10.1016/00092541(90)90101C.

40. Zhou X.H., Zhu B.Q., Liu R.X., Chen WJ., 1988. Cenozoic basaltic rocks in Eastern China. In: Continental flood basalts. Kluwer Academic Publishers, p. 311–330.


Для цитирования:


Чувашова И.С., Рассказов С.В., Ясныгина Т.А., Михеева Е.А. ВЫСОКОМАГНЕЗИАЛЬНЫЕ ЛАВЫ ДАРИГАНСКОГО ВУЛКАНИЧЕСКОГО ПОЛЯ, ЮГО-ВОСТОЧНАЯ МОНГОЛИЯ: ПЕТРОГЕНЕТИЧЕСКАЯ МОДЕЛЬ МАГМАТИЗМА НА АСТЕНОСФЕРНО-ЛИТОСФЕРНОЙ ГРАНИЦЕ. Геодинамика и тектонофизика. 2012;3(4):385-407. https://doi.org/10.5800/GT-2012-3-4-0081

For citation:


Chuvashova I.S., Rasskazov S.V., Yasnygina T.A., Mikheeva E.A. HIGH-MG LAVAS FROM THE DARIGANGA VOLCANIC FIELD IN THE SOUTHEASTERN MONGOLIA: PETROGENETIC MODEL OF MAGMATISM AT THE ASTHENOSPHERE–LITHOSPHERE BOUNDARY. Geodynamics & Tectonophysics. 2012;3(4):385-407. (In Russ.) https://doi.org/10.5800/GT-2012-3-4-0081

Просмотров: 410


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)