Preview

Geodynamics & Tectonophysics

Advanced search

40Ar/39Ar DATING OF MARUYAMAITE (K-DOMINANT TOURMALINE) FROM DIAMOND-BEARING METAMORPHIC ROCKS OF THE KOKCHETAV MASSIF

https://doi.org/10.5800/GT-2023-14-3-0699

Abstract

40Ar/39Ar analyses were made on maruyamaite (potassium-dominant tourmaline) from tourmaline-quartz-feldspar rocks discovered within the Kumdy-Kol microdiamond deposit (Kokchetav massif, North Kazakhstan). Turmaline yielded well-defined 40Ar/39Ar plateau age spectra whose values coincide within the error - ages of 502.3±8.0, 502.2±8.0, 506.0±8.0 Ma. These ages are much younger than the age of 530±2 Ma determined for high-pressure metamorphism by different methods. Thus, the formation of tourmaline-rich rocks of the Kumdy-Kol deposit cannot be associated with the high-pressure metamorphic events, and, therefore, testifies in favor of the low-pressure nature of maruyamaite. Based on the coincidence of age data for tourmaline crystals with different potassium contents, it can be concluded that the K/Ar system in tourmaline can be used for dating metasomatic and metamorphic processes.

About the Authors

A. V. Korsakov
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
Russian Federation

3 Academician Koptyug Ave, Novosibirsk 630090



D. S. Yudin
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
Russian Federation

3 Academician Koptyug Ave, Novosibirsk 630090



K. A. Musiyachenko
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences; University of British Columbia
Russian Federation

Andrey V. Korsakov.

3 Academician Koptyug Ave, Novosibirsk 630090; Vancouver V6T 1Z4, Canada



S. P. Demin
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
Russian Federation

3 Academician Koptyug Ave, Novosibirsk 630090



References

1. Berryman E.J., Wunder B., Ertl A., Koch-Muller M., Rhede D., Scheidl K., Giester G., Heinrich W., 2016. Influence of the X-Site Composition on Tourmaline's Crystal Structure: Investigation of Synthetic K-Dravite, Dravite, Oxy-Uvite, and Magnesio-Foitite Using SREF and Raman Spectroscopy. Physics and Chemistry of Minerals 43, 83-102. https:// doi.org/10.1007/s00269-015-0776-3.

2. Berryman E., Wunder B., Rhede D., 2014. Synthesis of K-Dominant Tourmaline. American Mineralogist 99 (2-3), 539-542. DOI:10.2138/am.2014.4775.

3. Berryman E.J., Wunder B., Wirth R., Rhede D., Schettler G., Franz G., Heinrich W., 2015. An Experimental Study on K and NA Incorporation in Dravitic Tourmaline and Insight into the Origin of Diamondiferous Tourmaline from the Kokchetav Massif, Kazakhstan. Contributions to Mineralogy and Petrology 169, 28. https://doi.org/10.1007/s00410-015-1116-9.

4. Borisova E.Yu., Bibikova E.V., Dobrzhinetskaya L.F., Makarov V.A., 1995. Geochronological Study of Zircons, from Granitegneisses of the Kokchetav Diamond-Bearing Area. Doklady Earth Sciences 343 (6), 801-805 (in Russian)

5. Buslov M., Dobretsov N., Vovna G., Kiselev V., 2015. Structural Location, Composition, and Geodynamic Nature of Diamond-Bearing Metamorphic Rocks of the Kokchetav Subduction-Collision Zone of the Central Asian Fold Belt (Northern Kazakhstan). Russian Geology and Geophysics 56 (1-2), 64-80. https://doi.org/10.1016/j.rgg.2015.01.004.

6. Claoue-Long J.C., Sobolev N.V., Shatsky V.S., Sobolev A.V., 1991. Zircon Response to Diamond-Pressure Metamorphism in the Kokchetav Massif, USSR. Geology 19 (7), 710-713. https://doi.org/10.1130/0091-7613(1991)019%3C0710:ZRTDPM%3E2.3.CO;2.

7. De Grave J.D., Buslov M.M., Zhimulev F., Vermeesch P., McWilliams M.O., Metcalf J., 2006. The Early Ordovician Age of Deformations in the Kokchetav Subduction-Collision Zone: New Structural and 40Ar/39Ar Data. Russian Geology and Geophysics 47 (4), 441-450.

8. Dobretsov N.L., Buslov M.M., Zhimulev F.I., Travin A.V., Zayachkovsky A.A., 2006. Vendian-Early Ordovician Geodynamic Evolution and Model for Exhumation of Ultrahigh- and High-Pressure Rocks from the Kokchetav Subduction-Collision Zone (Northern Kazakhstan). Russian Geology and Geophysics 47 (4), 428-444.

9. Dobretsov N.L., Sobolev N.V., Shatsky V.S., Coleman R.G., Ernst W.G., 1995. Geotectonic Evolution of Diamondiferous Paragneisses of the Kokchetav Complex, Northern Kazakhstan: The Geologic Enigma of Ultrahigh-Pressure Crustal Rocks within Phanerozoic Foldbelt. Island Arc 4 (4), 267-279. https://doi.org/10.1111/j.1440-1738.1995.tb00149.x.

10. Hacker B.R., Calvert A., Zhang R.Y., Ernst W.G., Liou J.G., 2003. Ultrarapid Exhumation of Ultrahigh-Pressure Diamond-Bearing Metasedimentary Rocks of the Kokchetav Massif, Kazakhstan? Lithos 70 (3-4), 61-75. https://doi.org/10.1016/S0024-4937(03)00092-6.

11. Hermann J., Rubatto D., Korsakov A., Shatsky V.S., 2001. Multiple Zircon Growth during Fast Exhumation of Diamondiferous, Deeply Subducted Continental Crust (Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology 141, 66-82. https://doi.org/10.1007/s004100000218.

12. Hermann J., Rubatto D., Korsakov A.V., Shatsky V.S., 2006. The Age of Metamorphism of Diamondiferous Rocks Determined with Shrimp Dating of Zircon. Russian Geology and Geophysics 47 (4), 513-520.

13. Jiang S.-Y., 1998. Stable and Radiogenic Isotope Studies of Tourmaline: An Overview. Journal of the Czech Geological Society 43, 75-90.

14. Katayama I., Muko A., Iizuka T., Maruyama S., Terada K., Tsutsumi Y., Sano Y., Zhang R.Y., Liou J.G., 2003. Dating of Zircon from Ti-Clinohumite-Bearing Garnet Peridotite: Implication for Timing of Mantle Metasomatism. Geology 31 (8), 713-716. https://doi.org/10.1130/G19525.1.

15. Katayama I., Zayachkovsky A.A., Maruyama S., 2000. Pro-grade Pressure-Temperature Records from Inclusions in Zircons from Ultrahigh-Pressure-High-Pressure Rocks of the Kokchetav Massif, Northern Kazakhstan. Island Arc 9, 417-427. https://doi.org/10.1046/j.1440-1738.2000.00286.x.

16. Korsakov A.V., Mikhailenko D.S., Zhang L., Shu Yu., 2023a (in press). Inclusions of Diamond Crystals in Tourmaline of the Schorl-Uvite Series: The Problems of Genesis. Journal of Mining Institute (in Russian)

17. Korsakov A.V., Musiyachenko K.A., Mikhailenko D.S., Demin S.P., 2023b (in press). Formation Conditions of Potassium-Dominant Tourmalines from the Kumdy-Kol Deposit (Kokchetav Massif, North Kazakhstan): from Data on Solid-Phase Inclusions. Lithosphere (in press) (in Russian)

18. Korsakov A.V., Theunissen K., Smirnova L.V., 2004. Intergranular Diamonds Derived from Partial Melting of Crustal Rocks at Ultrahigh-Pressure Metamorphic Conditions. Terra Nova 16 (3), 146-151. https://doi.org/10.1111/j.1365-3121.2004.00547.x.

19. Korsakov A.V., Travin A.V., Yudin D.S., Marschall H.R., 2009. 40Ar/39Ar Dating of Tourmaline from Metamorphic Rocks of the Kokchetav Massif, Kazakhstan. Doklady Earth Sciences 424, 168-170. https://doi.org/10.1134/S1028334X0901036X.

20. Lavrent'ev Y.G., Karmanov N.S., Usova L.V., 2015. Electron Probe Microanalysis of Minerals: Microanalyzer or Scanning Electron Microscope? Russian Geology and Geophysics 56 (8), 1154-1161. https://doi.org/10.1016/j.rgg.2015.07.006.

21. Lavrova L.D., Pechnikov V.A., Pleshakov A.M., Nadezhdina E.D., Shukolyukov Yu.A., 1999. A New Genetic Type of Diamond-Bearing Deposits. Nauchny Mir, Moscow, 228 p. (in Russian)

22. Letnikov F.A., 1983. Diamond Formation in Deep-Seated Tectonic Zones. Doklady of the USSR Academy of Sciences 271 (2), 433-435 (in Russian)

23. Marschall H.R., Jiang S.-Y., 2011. Tourmaline Isotopes: No Element Left Behind. Elements 7 (5), 313-319. https://doi.org/10.2113/gselements.7.5.313.

24. Marschall H.R., Korsakov A.V., Luvizotto G.L., Nasdala L., Ludwig T., 2009. On the Occurrence and Boron Isotopic Composition of Tourmaline in (Ultra)high-Pressure Metamorphic Rocks. Journal of the Geological Society 166 (4), 811-823. https://doi.org/10.1144/0016-76492008-042.

25. Musiyachenko K.A., Korsakov A.V., Letnikov F.A., 2021. A New Occurrence of Maruyamaite. Doklady Earth Sciences 498, 403-408. https://doi.org/10.1134/S1028334X21050111.

26. Musiyachenko K.A., Korsakov A.V., Shimizu R., Zelenovskiy P.S., Shur V.Y., 2020. New Insights on Raman Spectrum of K-Bearing Tourmaline. Journal of Raman Spectroscopy 51 (9), 1415-1424. https://doi.org/10.1002/jrs.5731.

27. Ota T., Kobayashi K., Kunihiro T., Nakamura E., 2008. Boron Cycling by Subducted Lithosphere; Insights from Diamondiferous Tourmaline from the Kokchetav Ultrahigh-Pressure Metamorphic Belt. Geochimica et Cosmochimica Acta 72 (14), 3531-3541. https://doi.org/10.1016/j.gca.2008.05.002.

28. Rezvukhina O.V., Skublov S.G., Rezvukhin D.I., Korsakov A.V., 2021. Rutile in Diamondiferous Metamorphic Rocks: New Insights from Trace-Element Composition, Mineral/ Fluid Inclusions, and U-Pb ID-TIMS Dating. Lithos 394-395, 106172. https://doi.org/10.1016/j.lithos.2021.106172.

29. Shatagin K.N., 1994. Age and Origin of Zerendinsk Batholith Granitoids in North Kazakhstan on Rb-Sr Isotopic Data. Doklady Earth Sciences 336 (5), 674-676 (in Russian)

30. Shatsky V.S., Jagoutz E., Sobolev N.V., Kozmenko O.A., Parkhomenko V.S., Troesch M., 1999. Geochemistry and Age of Ultrahigh Pressure Metamorphic Rocks from the Kokchetav Massif (Northern Kazakhstan). Contributions to Mineralogy and Petrology 137, 185-205. https://doi.org/10.1007/s004100050545.

31. Shatsky V.S., Sobolev N.V., Vavilov M.A., 1995. Diamond-Bearing Metamorphic Rocks of the Kokchetav Massif (Northern Kazakhstan). In: R. Coleman, X. Wang (Eds), Ultrahigh Pressure Metamorphism. Cambridge University Press, p. 427-455. https://doi.org/10.1017/CBO9780511573088.013.

32. Shimizu R., Ogasawara Y., 2005. Discovery of K-Tourmaline in Diamond-Bearing Quartz-Rich Rock from Kokchetav Massif, Kazakhstan. Mitteilungen der Osterreichischen Mineralogischen Gesellschaft 150, 141.

33. Shimizu R., Ogasawara Y., 2013. Diversity of Potassium-Bearing Tourmalines in Diamondiferous Kokchetav UHP Metamorphic Rocks: A Geochemical Recorder from Peak to Retrograde Metamorphic Stages. Journal of Asian Earth Sciences 63, 39-55. https://doi.org/10.1016/j.jseaes.2012.11.024.

34. Skuzovatov S.Yu., Shatsky V.S., Ragozin A.L., Wang K.-L., 2020. Ubiquitous Post-Peak Zircon in an Eclogite from the Kumdy-Kol, Kokchetav UHP-HP Massif (Kazakhstan): Significance of Exhumation-Related Zircon Growth and Modification in Continental-Subduction Settings. Island Arc 30 (1), e12385. https://doi.org/10.1111/iar.12385.

35. Stepanov A.S., Rubatto D., Hermann J., Korsakov A.V., 2016. Contrasting P-T Paths within the Barchi-Kol UHP Terrain (Kokchetav Complex): Implications for Subduction and Exhumation of Continental Crust. American Mineralogist 101 (4), 788-807. https://doi.org/10.2138/am-2016-5454.

36. Theunissen K., Dobretsov N.L., Korsakov A., Travin A., Shatsky V.S., Smirnova L., Boven A., 2000. Two Contrasting Petrotectonic Domains in the Kokchetav Megamelange (North Kazakhstan): Difference in Exhumation Mechanisms of Ultrahigh-Pressure Crustal Rocks, or a Result of Subsequent Deformation? Island Arc 9 (3), 284-303. https://doi.org/10.1046/j.1440-1738.2000.00279.x.

37. Travin A.V., 2016. Thermochronology of Early Paleozoic Collisional and Subduction-Collisional Structures of Central Asia. Russian Geology and Geophysics 57 (3), 434-450. https://doi.org/10.1016/j.rgg.2016.03.006.

38. Yudin D., Murzintsev N., Travin A., Alifirova T., Zhimulev E., Novikova S., 2021. Studying the Stability of the K/Ar Isotopic System of Phlogopites in Conditions of High T, P: 40Ar/39Ar Dating, Laboratory Experiment, Numerical Simulation. Minerals 11 (2), 192. https://doi.org/10.3390/min11020192.

39. Zhimulev F.I., Poltaranina M.A., Korsakov A.V., Buslov M.M., Druzyaka N.V., Travin A.V., 2010. Eclogites of the Late Cambrian-Early Ordovician North Kokchetav Tectonic Zone (Northern Kazakhstan): Structural Position and Petrology. Russian Geology and Geophysics 51 (2), 190-203. https://doi.org/10.1016/j.rgg.2009.12.020.


Review

For citations:


Korsakov A.V., Yudin D.S., Musiyachenko K.A., Demin S.P. 40Ar/39Ar DATING OF MARUYAMAITE (K-DOMINANT TOURMALINE) FROM DIAMOND-BEARING METAMORPHIC ROCKS OF THE KOKCHETAV MASSIF. Geodynamics & Tectonophysics. 2023;14(3):0699. (In Russ.) https://doi.org/10.5800/GT-2023-14-3-0699

Views: 426


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)