DESTRUCTION OF THE LITHOSPHERE: FAULTBLOCK DIVISIBILITY AND ITS TECTONOPHYSICAL REGULARITIES
https://doi.org/10.5800/GT-2012-3-4-0077
Abstract
A new concept is proposed concerning the origin and inception of ‘initial’ faults and formation of large blocks as a result of cooling of the Archaean lithosphere, during which Benard cells had formed (Fig. 5). At locations where cooling convection currents went down, partial crystallization took place, stresses were localized, and initial fault occurred there. The systems of such fault developed mainly in two directions and gradually formed an initial block pattern of the lithosphere. This pattern is now represented by the largest Archaean faults acting as boundaries of the lithospheric plates and large intraplate blocks (Fig. 6). This group of faults represents the first scaletime level of destruction of the lithosphere. Large blocks of the first (and may be the second) order, which are located on the viscous foundation, interacted with each other under the influence of the sublithospheric movements or endogenous sources and thus facilitated the occurrence of high stresses inside the blocks. When the limits of strength characteristics of the block medium were exceeded, the intrablock stresses were released and caused formation of fractures/faults and blocks of various ranks (Fig. 14). This large group, including faultblock structures of various ranks and ages, comprises the second level of the scaletime destruction of the lithosphere.
The intense evolution of ensembles of faults and blocks of the second scaletime level is facilitated by shortterm activation of faultblock structures of the lithosphere under the influence of strain waves. Periods of intensive shortterm activation are reliably detected by seismic monitoring over the past fifty years. Investigations of periodical processes specified in the geological records over the post-Proterozoic periods [Khain, Khalilov, 2009] suggest that in so far uninvestigated historical and more ancient times, the top of the lithosphere was subject to wave processes that influenced the metastable state of the faultblock medium of the lithosphere.
At the second scale-time level, the lithosphere is destructed in accordance with the laws of destruction of elastic and brittle bodies; at all hierarchical levels, the lithospheric destruction complies with the similarity patterns; the lithospheric destruction processes are characterized by fractality and take place synchronously with other destruction processes.
Equations of the fault (7) and block divisibility (8) of the lithosphere and the generalized equation (9) of the faultblock divisibility of lithosphere are proposed.
By the present stage of the geodynamic evolution of the Earth, the horizontally-layered zonal pattern of destruction of the Earth has been established (Fig. 15). The next step would be obtaining the knowledge of the law that governs the evolution of the lithospheric destruction as a whole. The subjects for discussions hold be variations of the rheological properties of the vertical profile of the lithosphere, impacts of the time factor on the rheological and mechanical properties, and, lastly, the initial heterogeneity of the lithospheric medium in combination with modern geodynamic processes. This problem is solvable, and its importance for practical applications is undubitable.
About the Author
Semen I. ShermanRussian Federation
Academician of the Russian Academy of Natural Sciences, Doctor of Geology and Mineralogy, Professor, Chief Researcher,
128 Lermontov street, Irkutsk 664033
References
1. Adushkin V.V., Spivak A.A., Loktev D.N., 1997. Diagnosis of rock massifs in the Mayak territory from results obtained by monitoring of relaxation processes. Voprosy radiatsionnoy bezopasnosti 1, 18–30 (in Russian) [Адушкин В.В., Спивак А.А., Локтев Д.Н. Диагностика массивов горных пород территории ПО «Маяк» по результатам мониторинга релаксационных процессов // Вопросы радиационной безопасности. 1997. № 1. С. 18–30].
2. Belousov T.P., Kurtasov S.V., Mukhamediev Sh.A., 1997. Divisibility of the Earth’s Crust and Paleostresses in Seismically Active and Oil-and-Gas-Bearing Regions of the Earth. UIPE RAS, Moscow, 324 p. (in Russian) [Белоусов Т.П., Куртасов С.В., Мухамедиев Ш.А. Делимость земной коры и палеонапряжения в сейсмоактивных и нефтегазоносных регионах Земли. М.: ОИФЗ РАН, 1997. 324 с.].
3. Bornyakov S.A., Sherman S.I., 2006. From nonstationary fault models to fracture dissipative structures of the lithosphere. In: Active Tectonic Areas in the Recent and Ancient History of the Earth. Proceedings of the 39th Tectonic Conference. Publishing House of the InterAgency
4. Tectonic Commission, Moscow, V. 2, p. 384–387 (in Russian) [Борняков С.А., Шерман С.И. От нестационарных моделей разломов к разрывным диссипативным структурам литосферы // Области активного тектогенеза в современной и древней истории Земли. М.: Межвед. тектон. комитет, 2006. Т. 2. С. 384–387].
5. Bykov V.G., 2005. Strain waves in the Earth: theory, field data, and models. Russian Geology and Geophysics 46 (11), 1176−1190.
6. Chebanenko I.I., 1963. Basic Regularities and Problems of Faulting of the Earth’s Crust. AN USSR, Kiev, 154 p. (in Russian) [Чебаненко И.И. Основные закономерности разломной тектоники земной коры и ее проблемы. Киев: АН УССР, 1963. 154 с.].
7. Chernyshov S.N., 1983. Fractures in Rocks. Nauka, Moscow, 240 p. (in Russian) [Чернышов С.Н. Трещины горных пород. М.: Наука, 1983. 240 с.].
8. Fault Map of the USSR and adjacent countries (scale 1: 2500000), 1977 (in Russian) [Карта разломов территории СССР и сопредельных стран (масштаб 1 : 2500000). 1977].
9. Filippov A.F., 1961. On the distribution of particle by sizes during crushing // The Theory of Probability and Its Applications VI (3), 14–19 (in Russian) [Филиппов А.Ф. О распределении размеров частиц при дроблении // Теория вероятностей и ее применения. М.: Изд-во АН СССР, 1962. Т. VI. Вып. 3. С. 14–19].
10. Fukuyama E., Ikeda R., 2002. Proceedings of the international Workshop on the Physics of Active Fault. National Research Institute for Science and Disaster Prevention, Japan, Tokio, 382 p.
11. Gatinsky Yu.G., Rundquist D.V., 2004. Geodynamics of Eurasia: plate tectonics and block tectonics. Geotectonics 38 (1), 1–16.
12. Gatinsky Yu.G., Rundquist D.V., 2009. Zones of catastrophic earthquakes of Central Asia: Geodynamics and seismic energy. Russian Journal of Earth Sciences 11, ES1001. http://dx.doi.org/10.2205/2009ES000326.
13. Gatinsky Y., Rundquist D., Vladova G., Prokhorova T., 2011. Uptodate geodynamics and seismicity of Central Asia. International Journal of Geosciences 2 (1), 1–12. http://dx.doi.org/10.4236/ijg.2011.21001.
14. Gatinsky Yu.G., Rundkvist D.V., Vladova G.L., Prokhorova T.V., 2011b. Seismic and geodynamic monitoring the main power plants in Russia and CIS. In: Extreme natural phenomena and disasters. Uranium Geology, geoecology, and glaciology. IPE RAS, Moscow, V. II. 13–27 (in Russian) [Гатинский Ю.Г., Рундквист Д.В., Владова Г.Л., Прохорова Т.В.
15. Сейсмо-геодинамический мониторинг главнейших энергетических объектов России и ближнего зарубежья // Экстремальные природные явления и катастрофы. Геология урана, геоэкология, гляциология. М.: ИФЗ РАН, 2011б. Т. II. С. 13–27].
16. Gatinsky Yu.G., Rundquist D.V., Vladova G.L., Prokhorova T.V., Romanyuk T.V., 2008. Block structure and geodynamics of continental lithosphere in plate boundaries. Bulletin of Kamchatka regional association "Educational-Scientific Center". Earth Sciences 1 (11), 32–47.
17. Gatinsky Yu.G., Vladova G.L., Prokhorova T.V., Rundkvist D.V., 2011a. Geodynamics of Central Asia and forecasting of catastrophic earthquake. Prostranstvo i Vremya 3 (5), 124–134 (in Russian) [Гатинский Ю.Г., Владова Г.Л., Прохорова Т.В., Рундквист Д.В. Геодинамика Центральной Азии и прогноз катастрофических землетрясений // Пространство и время. 2011а. Т. 3. № 5. С. 124–134].
18. Goldin S.V., 2002. Lithosphere destruction and physical mesomechanics. Physical Mesomechanics Journal 5 (5–6), 5–20.
19. Goldin S.V., 2004. Dilatancy, repacking, and earthquakes. Izvestiya, Physics of the Solid Earth 40 (10), 817–832.
20. Gorbunova E.A., Sherman S.I., 2012. Slow deformation waves in the lithosphere: registration, parameters, and geodynamic analysis (Central Asia). Russian Journal of Pacific Geology 6 (1), 13–20. http://dx.doi.org/10.1134/S181971401201006X.
21. Gufeld I.L., Matveeva M.I., Novoselov O.N., 2011. Why we cannot predict strong earthquakes in the Earth’s crust. Geodynamics & Tectonophysics 2 (4), 378–415. http://dx.doi.org/10.5800/GT2011240051.
22. Gutenberg B., Richter C.F., 1955. Magnitude and energy of earthquakes. Nature 176 (4486), 795. http://dx.doi.org/10.1038/176795a0.
23. Gzovsky M.V., 1971. Mathematics in Geotectonics. Nedra, Moscow, 240 p. (in Russian) [Гзовский М.В. Математика в геотектонике. М.: Недра, 1971. 240 с.].
24. Gzovsky M.V., 1975. Fundamentals of Tectonophysics. Nauka, Moscow, 536 p. (in Russian) [Гзовский М.В. Основы тектонофизики. М.: Наука, 1975. 536 с.].
25. Jin S., Park P.H., Zhu W., 2007. Microplate tectonics and kinematics in Northeast Asia inferred from a dense set of GPS observations. Earth and Planetary Science Letters 257 (3–4), 486–496. http://dx.doi.org/10.1016/j.epsl.2007.03.011.
26. Khain V.E., 1981. International tectonic map of the World (Scale 1:15000000). USSR Academy of Sciences, Commission on Geological Map of the World, Moscow.
27. Khain V.E., Khalilov E.N., 2009. Cyclicity of Geodynamic Processes: Possible Nature. Nauchny Mir, Moscow, 520 p. (in Russian) [Хаин В.Е., Халилов Э.Н. Цикличность геодинамических процессов: ее возможная природа. М.: Научный мир, 2009. 520 с.].
28. Kocharyan G.G., 2010. Fault zone as a nonlinear mechanic system. Fizicheskaya Mezomechanika 13 (special issue), 5–17 (in Russian) [Кочарян Г.Г. Разломная зона как нелинейная механическая система // Физическая мезомеханика. 2010. Т. 13. Спец. выпуск. С. 5–17].
29. Kocharyan G.G., Kishkina S.B., Ostapchuk A.A., 2010. Seismic picture of a fault zone. What can be gained from the analysis of fine patterns of spatial distribution of weak earthquake centers? Geodynamics & Tectonophysics 1 (4), 419–440. http://dx.doi.org/10.5800/GT2010140027.
30. Kocharyan G.G., Kishkina S.B., Ostapchuk A.A., 2011. Seismogenic width of a fault zone. Doklady Earth Sciences 437 (1), 412–415. http://dx.doi.org/10.1134/S1028334X11030147.
31. Kocharyan G.G., Spivak A.A., 2003. Dynamics of Deformation Of Block Rock Masses. ICC Akademkniga, Moscow, 423 p. (in Russian) [Кочарян Г.Г., Спивак А.А. Динамика деформирования блочных массивов горных пород. М.: ИКЦ «Академкнига», 2003. 423 с.].
32. Kolmogorov A.N., 1941. On the lognormal distribution of particles during crushing // Doklady AN SSSR 31 (2), 99–101 (in Russian) [Колмогоров А.Н. О логарифмически-нормальном законе распределения частиц при дроблении // Доклады АН СССР. 1941. Т. 31. № 2. С. 99–101].
33. Kostyuchenko V.N., Kocharyan G.G., Pavlov D.V., 2002. Strain characteristics of interblock gaps of different scales. Physical Mesomechanics Journal 5 (5–6), 23–42.
34. Krasny L.I., 1967. Geoblocks. Geotektonika 5, 103–120 (in Russian) [Красный Л.И. Геоблоки // Геотектоника. 1967. № 5. C. 103–120].
35. Krasny L.I., 1984. Global System of Geoblocks. Nedra, Moscow, 224 p. (in Russian) [Красный Л.И. Глобальная система геоблоков. М.: Недра, 1984. 224 с.].
36. Kuzmin Yu.O., 2004. Recent geodynamics of fault zones. Izvestiya, Physics of the Solid Earth 40 (10), 868–883.
37. Kuz’min Yu.O., 2012. Deformation autowaves in fault zones. Izvestiya, Physics of the Solid Earth 48 (1), 1–16. http://dx.doi.org/10.1134/S1069351312010089.
38. Liu M., Yang Y., Shen Z., Wang S., Wang M., Wan Y., 2007. Active tectonics and intracontinental earthquakes in China: the kinematics and geodynamics. Geological Society of America Special Paper 425, 299–318. http://dx.doi.org/10.1130/2007.2425(19).
39. Lukyanov A.V., 1985a. Natural oscillations in models of geological autooscillation systems. In: Experimental tectonics in theoretical and applied geology. Nauka, Moscow, p. 94–112 (in Russian) [Лукьянов А.В. Собственные колебания в моделях геологических автоколебательных систем // Экспериментальная тектоника в теоретической и прикладной геологии. М.: Наука, 1985а. C. 94–112].
40. Lukyanov A.V., 1985b. Problems of physics of tectonic processes. In: The future of Geological Science. Nauka, Moscow, p. 53–62 (in Russian) [Лукьянов А.В. Проблемы физики тектонических процессов // Будущее геологической науки. М.: Наука, 1985б. C. 53–62].
41. Makarov P.V., 2004. On the hierarchical nature of deformation and fracture of solids and media. Physical Mesomechanics Journal 7 (3–4), 21–29.
42. Makarov P.V., 2007. Evolutionary nature of structure formation in lithospheric material: universal principle for fractality of solids. Russian Geology and Geophysics 48 (7), 558–574. http://dx.doi.org/10.1016/j.rgg.2007.06.003.
43. Makarov P.V., 2011. Resonance structure and inelastic strain and defect localization in loaded media. Physical Mesomechanics 14 (5–6), 297–307. http://dx.doi.org/10.1016/j.physme.2011.12.008.
44. Makarov P.V., Smolin I.Yu., Stefanov Yu.P., Kuznetsov P.V., Trubitsin A.A., Trubitsina N.V., Voroshilov S.P., Voroshilov Ya.S., 2007. Nonlinear Geomechanics of Geomaterials and Geoenvironments. Geo Publishing House, Novosibirsk, 235 p. (in Russian) [Макаров П.В., Смолин И.Ю., Стефанов Ю.П., Кузнецов П.В., Трубицин А.А., Трубицина Н.В., Ворошилов
45. С.П., Ворошилов Я.С. Нелинейная геомеханика геоматериалов и геосред. Новосибирск: Академическое издательство «Гео», 2007. 235 с.].
46. Mooddy D.D., Hill M.D., 1960. Shear tectonics. In: Problems of modern foreign tectonics. Mir, Moscow, p. 265–333 (in Russian) [Мудди Д.Д., Хилл М.Д. Сдвиговая тектоника // Вопросы современной зарубежной тектоники. М.: Мир, 1960. C. 265–333].
47. Nesmeyanov S.A., 2004. Introduction to Engineering Geotectonics. Nauchny Mir, Moscow, 216 p. (in Russian) [Несмеянов С.А. Введение в инженерную геотектонику. М.: Научный мир, 2004. 216 с.].
48. Nicolis G., Prigozhin I., 1979. Self-organization in Non-equilibrium Systems. From Dissipative Structures to Order through Fluctuations. Mir, Moscow, 512 p. (in Russian) [Николис Г., Пригожин И. Самоорганизация в неравновесных системах. От диссипативных структур к упорядоченности через флуктуации. М.: Мир, 1979. 512 с.].
49. Nikonov A.A., 1995. Active faults: identification and problem of identification. Geoecology 4, 16–27 (in Russian) [Никонов А.А. Активные разломы: определение и проблемы выделения // Геоэкология. 1995. № 4. С. 16–27].
50. Ouillon G., Sornette D., 2005. Magnitude-depended Omori law: Theory and empirical study. Journal of Geophysical Research 110 (4), 1–28. http://dx.doi.org/10.1029/2004JB003311.
51. Peive A.V., 1990. Selected Works. Deep Faults and Their Role in the Structure and Development of the Earth's Crust. Nauka, Moscow, 352 p. (in Russian) [Пейве А.В. Избранные труды. Глубинные разломы и их роль в строении и развитии земной коры. М.: Наука, 1990. 352 с.]
52. Petrov O.V., 2007. Dissipative Structure of the Earth as Manifestation of Fundamental Wave Properties of the Substance. Publishing house of VSEGEI, St. Petersburg, 304 p. (in Russian) [Петров О.В. Диссипативные структуры Земли как проявление фундаментальных волновых свойств материи. СПб: ВСЕГЕИ, 2007. 304 с.].
53. Piotrovsky V.V., 1964. The use of morphometrics to study topography and structure of the Earth. In: The Earth in the Universe. Mysl, Moscow, p. 278–297 (in Russian) [Пиотровский В.В. Использование морфометрии для изучения рельефа и строения Земли // Земля во Вселенной. М.: Мысль, 1964. C. 278–297].
54. Plekhov O.A., Panteleev I.A., 2008. Optimization of deformation time prediction for solid bodies on the basis of the concept of the hierarchical nature of deformation and analysis of the history of loading. Fizicheskaya Mezomechanika 11 (6), 53–60 (in Russian) [Плехов О.А., Пантелеев И.А. Оптимизация предсказания времени разрушения твердых тел на основе представления об иерархической природе деформации и анализа истории нагружения // Физическая мезомеханика. 2008. Т. 11. № 6. С. 53–60].
55. Plotnikov L.M., 1985. The problem of modeling of structure formation in wave fields of mechanical stresses. In: Experimental tectonics in theoretical and applied geology. Nauka, Moscow, p. 113–117 (in Russian) [Плотников Л.М. Задача моделирования структурообразования в волновых полях механических напряжений // Экспериментальная тектоника в теоретической и прикладной геологии. М.: Наука, 1985. C. 113–117].
56. Ponomarev V.S., Romashov A.N., Sukhotin A.P., Tsygankov S.S., 1995. Specific features of deformation of twolayer models in modeling of geological processes. Geologiya i Geofizika 36 (4), 116–121 (in Russian) [Пономарёв В.С., Ромашов А.Н., Сухотин А.П., Цыганков С.С. Особенности разрушения двухслойных моделей при моделировании геологических процессов // Геология и геофизика. 1995. Т. 36. № 4. С. 116–121].
57. Rats M.V., 1962. On dependence of density of fractures from thickness of layers. Doklady AN SSSR 144 (3), 622–625 (in Russian) [Рац М.В. К вопросу о зависимости густоты трещин от мощности слоёв // Доклады АН СССР. 1962. Т. 144. № 3. С. 622–625].
58. Rats M.V., Chernyshov S.N., 1970. Fracturing and Properties of Fractured Rocks. Nedra, Moscow, 160 p. (in Russian) [Рац М.В., Чернышов С.Н. Трещиноватость и свойства трещиноватых горных пород. М.: Недра, 1970. 160 с.].
59. Rundquist D.V., Gatinsky Yu.G., Cherkasov S.V., 2004. Trans-Eurasian divider: structural and metallogenic evidences. 32IGC, Florence, Italy. Aug. 20–28. Abstracts. Part 1, 136–139. P. 620.
60. Sadovsky M.A., Bolkhovitinov L.G., Pisarenko V.F., 1987. Deformation of the Geophysical Medium and Seismic Process. Nauka, Moscow, 100 p. (in Russian) [Садовский М.А., Болховитинов Л.Г., Писаренко В.Ф. Деформирование геофизической среды и сейсмический процесс. М.: Наука, 1987. 100 с.].
61. San'kov V.A., 1989. Depths of Fault Penetration. Siberian Branch, Nauka, Novosibirsk, 136 p. (in Russian) [Саньков В.А. Глубины проникновения разломов. Новосибирск: Наука. Сибирское отделение, 1989. 136 с.].
62. San’kov V.A., Lukhnev A.V., Radziminovich N.A., Mel’nikova V.I., Miroshnichenko A.I., Ashurkov S.V., Calais E., Deverchere J., 2005. A Quantitative estimate of modern deformations of the Earth’s crust in the Mongolian block (Based on GPS-geodesy and seismotectonic data). Doklady Earth Sciences 403 (6), 946–949.
63. Scholz C.H., 2002. The Mechanics of Earthguakes and Faulting. Cambridge University Press, New York, 2nd ed., 480 p.
64. Seminsky K.Zh., 2001. Tectonophysical regularities of the lithosphere destruction as exemplified by the Himalayan area of compression. Tikhookeanskaya Geologiya 20 (6), 17–30 (in Russian) [Семинский К.Ж. Тектонофизические закономерности деструкции литосферы на примере Гималайской зоны сжатия // Тихоокеанская геология. 2001. Т. 20. № 6. С. 17–30].
65. Seminsky K.Zh., 2003. Internal Structure of Continental Fault Zones. Tectonophysical Aspect. Publishing House of SB RAS, GEO Branch, Novosibirsk, 243 p. (in Russian) [Семинский К.Ж. Внутренняя структура континентальных разломных зон. Тектонофизический аспект. Новосибирск: Издательство СО РАН. Филиал «ГЕО», 2003. 243 с.].
66. Seminskii К.Zh., 2008. Hierarchy in the zoneblock lithospheric structure of Central and Eastern Asia. Russian Geology and Geophysics 49 (10), 771–779. http://dx.doi.org/10.1016/j.rgg.2007.11.017.
67. Sherman S.I., 1977. Physical Regularities of Crustal Fracturing. Nauka, Siberian Branch, Novosibirsk, 102 p. (in Russian) [Шерман С.И. Физические закономерности развития разломов земной коры. Новосибирск: Наука, 1977. 102 с.].
68. Sherman S.I., 1996. Destructive zones of the lithosphere, state of stress, and seismicity. In: Neotectonics and recent geodynamics of continents and oceans. RAS, MTK, Moscow, p. 157–158 (in Russian) [Шерман С.И. Деструктивные зоны литосферы, их напряженное состояние и сейсмичность // Неотектоника и современная геодинамика континентов и океанов. М.: РАН, МТК, 1996. С. 157–158].
69. Sherman S.I., 2002. Development of M.V. Gzovsky’s concepts in recent tectonophysical studies of faulting and seismicity in the lithosphere. In: Tectonophysics today (To the anniversary of M.V. Gzovsky). UIPE RAS, Moscow, p. 49–59 (in Russian) [Шерман С.И. Развитие представлений М.В. Гзовского в современных тектонофизических исследованиях разломообразования и сейсмичности в литосфере // Тектонофизика сегодня (к юбилею М.В. Гзовского). М.: ОИФЗ РАН, 2002. C. 49–59].
70. Sherman S.I., 2004. Stationary and nonstationary models of formation of major faults in the lithosphere and their use for the spacetime analysis of the seismic process. In: The evolution of tectonic processes in the Earth's history. Publishing House of SB RAS, GEO Branch, Novosibirsk, V. 2, p. 299–302 (in Russian) [Шерман С.И. Стационарная и нестационарная
71. модели формирования крупных разломов литосферы и их использование для пространственно-временного анализа сейсмического процесса // Эволюция тектонических процессов в истории Земли. Новосибирск: Издательство СО РАН. Филиал «ГЕО», 2004. Т. 2. С. 299–302].
72. Sherman S.I., 2005. The nonstationary tectonophysical model of faults and its application to analysis of the seismic process in destructive zones of the lithosphere. Fizicheskaya Mezomechanika 8 (1), 71–80 (in Russian) [Шерман С.И. Нестационарная тектонофизическая модель разломов и ее применение для анализа сейсмического процесса в деструктивных зонах литосферы // Физическая мезомеханика. 2005. Т. 8. № 1. С. 71–80].
73. Sherman S.I., 2009a. A tectonophysical model of a seismic zone: experience of development based on the example of the Baikal rift system. Izvestiya, Physics of the Solid Earth 45 (11), 938–941. http://dx.doi.org/10.1134/S1069351309110020.
74. Sherman S.I., 2009b. A.V. Peyve – the founder of the concept of deep faults. Geotectonics 43 (2), 100–114. http://dx.doi.org/10.1134/S0016852109020034.
75. Sherman S.I., Bornyakov S.A., Buddo V.Yu., 1983. Areas of Dynamic Influence of Faults (Modelling Results). Nauka, Siberian Branch of the Academy of Sciences of the USSR, Novosibirsk, 110 p. (in Russian) [Шерман С.И., Борняков С.А., Буддо В.Ю. Области динамического влияния разломов (результаты моделирования). Новосибирск: Наука, СО АН СССР, 1983. 110 с.].
76. Sherman S.I., Bornyakov S.A., Cheremnykh A.V., Dzyuba I.A. et al., 2005a. Critical states of fracture systems in dissipative structures of major fault zones and diagnostics criteria. In: Modern geodynamics and hazardous natural processes in Central Asia. Institute of the Earth's Crust, Irkutsk, Issue 3, p. 267–270 (in Russian) [Шерман С.И., Борняков С.А., Черемных А.В., Дзюба И.А. и др. Критические состояния разрывных систем в диссипативных структурах зон крупных разломов и критерии их диагностики // Современная геодинамика и опасные природные процессы в Центральной Азии. Иркутск: Институт земной коры СО РАН, 2005. Вып. 3. С. 267–270].
77. Sherman S.I., Bornyakov S.A., Cheremnykh A.V., Dzyuba I.A., Tatarnikov A.S., 2005b. Dissipative structures in the lithosphere destruction zones (based on physical modelling results). In: Tectonics of the Earth's crust and mantle. Tectonic regularities of distribution of minerals. InterAgency Tectonic Commission, Moscow, V. 1, p. 65–68 (in Russian) [Шерман
78. С.И., Борняков С.А., Черемных А.В., Дзюба И.А., Татарников А.С. Диссипативные структуры деструктивных зон литосферы (по результатам физического моделирования) // Тектоника земной коры и мантии. Тектонические закономерности размещения полезных ископаемых. М.: Межвед. тектонич. комитет., 2005. Т. 1. C. 65–68].
79. Sherman S.I., Cheremnykh A.A., Adamovich A.N., 1996. Faultblock divisibility of the lithosphere: Regularities of structural patterns and tectonic activity. In: Geodynamics and evolution of the Earth. UIGGM, Novosibirsk, p. 74–77 (in Russian) [Шерман С.И., Черемных А.В., Адамович А.Н. Разломноблоковая делимость литосферы: закономерности структурной организации и тектонической активности // Геодинамика и эволюция Земли. Новосибирск: ОИГГиМ, 1996. C. 74–77].
80. Sherman S.I., Dem’yanovich V.M., Lysak S.V., 2004. Active faults, seismicity and fracturing in the lithosphere of the Baikal rift system. Tectonophysics 380 (3–4), 261–272. http://dx.doi.org/10.1016/j.tecto.2003.09.023.
81. Sherman S.I., Gladkov A.S., 1999. Fractals in studies of faulting and seismicity in the Baikal rift zone. Tectonophysics 308 (1–2), 133–142. http://dx.doi.org/10.1016/S00401951(99)000839.
82. Sherman S.I., Gorbunova E.A., 2008. The wave nature of fault activation in Central Asia on the basis of seismic monitoring. Fizicheskaya Mezomechanika 11 (1), 115–122 (in Russian) [Шерман С.И., Горбунова Е.А. Волновая природа активизации разломов Центральной Азии на базе сейсмического мониторинга // Физическая мезомеханика. 2008. Т. 11. № 1. С. 115–122].
83. Sherman S.I., Lysak S.V., Gorbunova E.A., 2012. A tectonophysical model of the Baikal seismic zone: testing and implications for mediumterm earthquake prediction. Russian Geology and Geophysics 53 (4), 392–405. http://dx.doi.org/10.1016/j.rgg.2012.03.003.
84. Sherman S.I., Savitsky V.A., 2006. New data on quasiperiodical regularities in activation of fractures in real time based on monitoring of magnitudes of seismic events: case study of the Baikal rift system. Doklady Earth Sciences 408 (4), 640–644. http://dx.doi.org/10.1134/S1028334X06040295.
85. Sherman S.I., Seminsky K.Zh., Bornyakov S.A. et al., 1992. Faulting in the Lithosphere. Extension Zones. Siberian Branch, Nauka, Novosibirsk, 227 p. (in Russian) [Шерман С.И., Семинский К.Ж., Борняков С.А. и др. Разломообразование в литосфере // Зоны растяжения. Новосибирск: Наука. Сибирское отделение, 1992. 227 с.].
86. Sherman S.I., Seminsky K.Zh., Bornyakov S.A. et al., 1994. Faulting in the Lithosphere. Compression Zones. Siberian Branch, Nauka, Novosibirsk, 262 p. (in Russian) [Шерман С.И., Семинский К.Ж., Борняков С.А. и др. Разломообразование в литосфере // Зоны сжатия. Новосибирск: Наука. Сибирское отделение, 1994. 262 с.].
87. Sherman S.I., Seminsky K.Zh., Bornyakov S.A., Buddo V.Yu., Lobatskaya R.M., Adamovich A.N., Truskov V.A., Babichev A.A., 1991. Faulting in the Lithosphere. Strike-Slip Zone. Nauka, Siberian Branch, Novosibirsk, 261 p. (in Russian) [Шерман С.И., Семинский К.Ж. Борняков С.А., Буддо В.Ю., Лобацкая Р.М., Адамович А.Н., Трусков В.А., Бабичев А.А. Разломообразование в литосфере. Зоны сдвига. Новосибирск: Наука. Сибирское отделение, 1991. 261 с.].
88. Sherman S.I., Seminsky K.Zh., Cheremnykh A.V., 1999. Destructive zones and faultblock structure of Central Asia. Tikhookeanskaya Geologiya 18 (2), 41–53 (in Russian) [Шерман С.И., Семинский К.Ж., Черемных А.В. Деструктивные зоны и разломноблоковые структуры Центральной Азии // Тихоокеанская геология. 1999. Т. 18. № 2. С. 41–53].
89. Sherman S.I., Seminsky K.Zh., Cheremnykh A.V., 2005c. Faultblock tectonics of Central Asia: Experiences of tectonophysical analysis. In: Actual problems of modern geodynamics of Central Asia. Publishing House of SB RAS, Novosibirsk, p. 135–165 (in Russian) [Шерман С.И., Семинский К.Ж., Черемных А.В. Разломноблоковая тектоника Центральной Азии: опыт тектонофизического анализа // Актуальные вопросы современной геодинамики Центральной Азии. Новосибирск: Издательствово СО РАН, 2005. С. 135–165].
90. Sherman S.I., Sorokin A.P., Savitskii V.A., 2005d. New methods for the classification of seismoactive lithospheric faults based on the index of seismicity. Doklady Earth Sciences 401 (3), 413–416.
91. Sherman S.I., Yem N.T., Seminskii K.Zh., 2000. A new map of fault–block tectonics in Vietnam. Doklady Earth Sciences 371 (3), 473–476.
92. Sobolev G.A., 2002. Dynamics of faulting and seismicity. In: Tectonophysics today. UIPE RAS, Moscow, p. 67–78 (in Russian) [Соболев Г.А. Динамика разрывообразования и сейсмичность // Тектонофизика сегодня. М.: ОИФЗ РАН, 2002. С. 67–78].
93. Sobolev G.A., Asatryan Kh.O., 1990. Development of the hierarchy of faults during deformation of the highplasticity material. Doklady AN SSSR 315 (2), 345–348 (in Russian) [Соболев Г.А., Асатрян Х.О. Развитие иерархии разрывов при деформировании высокопластичного материала // Доклады АН СССР. 1990. Т. 315. № 2. С. 345–348].
94. Sobolev G.A., Ponomarev A.V., 2003. Physics of Earthquakes and Precursors. Nauka, Moscow, 268 p. (in Russian) [Соболев Г.А., Пономарев А.В. Физика землетрясений и предвестники. М.: Наука, 2003. 268 с.].
95. Spivak A.A., 2011. Rigidity of the fault zones in the Earth’s crust estimated from seismic data. Izvestiya, Physics of the Solid Earth 47 (7), 600–609. http://dx.doi.org/10.1134/S1069351311060061.
96. Spivak А.А., Spungin V.G., 1998. Determination of active stresses and specific features of deformation of block mediums on the basis of geological medium microvibration records. Geoekologiya 4, 71–81 (in Russian) [Спивак А.А., Спунгин В.Г. Определение действующих напряжений и особенностей деформирования блочных сред на основе регистрации микроколебаний геологической среды // Геоэкология. 1998. № 4. С. 71–81].
97. Spivak A.A., Tsvetkov V.M., 2009. A new model of the zonal structure of fractures. Doklady Earth Sciences 424 (1), 151–154. http://dx.doi.org/10.1134/S1028334X09010322.
98. Stepashko A.A., 2011. Seismodynamics and deep internal origin of the North China zone of strong earthquakes. Geodynamics & Tectonophysics 2 (4), 341–355. http://dx.doi.org/10.5800/GT2011240049.
99. Suvorov A.I., 1977a. Fractures and Horizontal Movements of Mountain Structures of the USSR. Nauka, Moscow, 135 p. (in Russian) [Суворов А.И. Разломы и горизонтальные движения горных сооружений СССР. М.: Наука, 1977а. 135 с.].
100. Suvorov A.I., 1977b. Fractures and Horizontal Movements of Platform Areas of the USSR. Nauka, Moscow, 143 p. (in Russian) [Суворов А.И. Разломы и горизонтальные движения платформенных областей СССР. М.: Наука, 1977б. 143 с.].
101. Trifonov V.G., 1985. Specific features of development of active faults. Geotektonika 2, 16–26 (in Russian) [Трифонов В.Г. Особенности развития активных разломов // Геотектоника. 1985. № 2. C. 16–26].
102. Ulomov V.I., 1993. Waves of seismogeodynamic activation and longterm prediction of earthquakes. Fizika Zemli 4, 43–53 (in Russian) [Уломов В.И. Волны сейсмо-геодинамической активизации и долгосрочный прогноз землетрясений // Физика Земли. 1993. № 4. C. 43–53].
103. Vashchilov Yu.Ya., 1984. The Block-Layered Model of the Earth’s Crust and Upper Mantle. Nauka, Moscow, 238 p. (in Russian) [Ващилов Ю.Я. Блоково-слоистая модель земной коры и верхней мантии. М.: Наука, 1984. 238 с.].
104. Xu X., Deng Q., 1996. Nonlinear characteristics of paleoseismicity in China. Journal of Geophysical Research 101 (B3), 6209–6231. http://dx.doi.org/10.1029/95JB01238.
105. Zhang Y., Ma Y., Yang D., 2003. Neotectonic activity of the southern marginal fault zone of the Taihangshan Mountains and its regional kinematic implications. Seismology and Geology 25 (2), 169–182.
106. Zhurkov S.N., Kuksenko V.S., Petrov V.A., 1983. Is it possible to predict the destruction? In: The future of science. Znanie, Moscow, p. 99–107 (in Russian) [Журков С.Н., Куксенко В.С., Петров В.А. Можно ли прогнозировать разрушение? // Будущее науки. М.: Знание, 1983. C. 99–107].
Review
For citations:
Sherman S.I. DESTRUCTION OF THE LITHOSPHERE: FAULTBLOCK DIVISIBILITY AND ITS TECTONOPHYSICAL REGULARITIES. Geodynamics & Tectonophysics. 2012;3(4):315-344. (In Russ.) https://doi.org/10.5800/GT-2012-3-4-0077