ВОЛГО-ДОНСКОЙ КОЛЛИЗИОННЫЙ ОРОГЕН ВОСТОЧНО-ЕВРОПЕЙСКОГО КРАТОНА КАК ПАЛЕОПРОТЕРОЗОЙСКИЙ АНАЛОГ ГИМАЛАЙ-ТИБЕТСКОГО ОРОГЕНА
https://doi.org/10.5800/GT-2023-14-2-0692
Аннотация
Волго-Донской складчато-надвиговый пояс, возникший около 2.0 млрд лет тому назад, занимает площадь около 300000 км2 (~500 км в ширину и ~600 км в длину) и располагается между архейскими протократонными Сарматским и Волго-Уральским блоками Восточно-Европейского кратона, которые подстилаются мощными, 200‒300 км, сублитосферными мантийными килями. Целью настоящей статьи является выяснение природы его происхождения, для того чтобы ответить на фундаментальный вопрос о том, как этот и другие складчато-надвиговые пояса могли формироваться в палеопротерозое и был ли стиль орогенеза того времени схожим с таковым современных коллизионных орогенов или отличным от него. В качестве тектонотипа коллизионной геодинамики принято рассматривать хорошо изученный дивергентный Гималайско-Тибетский орогенический пояс, особенности развития которого, как правило, служат основой для расшифровки орогенических процессов в геологической истории Земли. Однако для раннего докембрия широко распространены представления о том, что орогенические процессы того времени должны были сильно отличаться от современного орогенеза вследствие высокого геотермического градиента в коре, обусловленного повышенной радиоактивной теплогенерацией.
В статье авторы детально рассматривают глубинную тектонику палеопротерозойского Волго-Донского орогена, реконструкция которого свидетельствует о том, что он представляет собой слабо эродированную орогеническую постройку дивергентной архитектуры; она сложена преимущественно ювенильными метаосадками, фазы ее развития сопоставляются с историей становления Гималайско-Тибетского коллизионного орогена, но не согласуются с представлениями о «горячем/ультрагорячем» стиле орогенеза в раннем докембрии, базирующимися, прежде всего, на результатах численного моделирования.
Ключевые слова
Об авторах
А. А. ЩипанскийРоссия
119017, Москва, Пыжевский пер., 7, стр. 1
Т. Н. Хераскова
Россия
119017, Москва, Пыжевский пер., 7, стр. 1
Список литературы
1. Artemieva I.M., 2003. Lithospheric Structure, Composition, and Thermal Regime of the East European Craton: Implications for the Subsidence of the Russian Platform. Earth Planetary Science Letters 213 (3–4), 429–444. https://doi.org/10.1016/S0012-821X(03)00327-3.
2. Artemieva I.M., 2006. Global 1°×1° Thermal Model TC1 for the Continental Lithosphere: Implications for Lithosphere Secular Evolution. Tectonophysics 416 (1–4), 245–277. https://doi.org/10.1016/j.tecto.2005.11.022.
3. Artemieva I.M., 2007. Dynamic Topography of the East European Craton: Shedding Light upon the Lithospheric Structure, Composition and Mantle Dynamics. Global and Planetary Change 58 (1–4), 411–434. https://doi.org/10.1016/j.gloplacha.2007.02.013.
4. Artemieva I.M., Mooney W.D., 2001. Thermal Structure and Evolution of Precambrian Lithosphere: A Global Study. Journal of Geophysical Research: Solid Earth 106, 16387–16414. https://doi.org/10.1029/2000JB900439.
5. Ashchepkov I.V., Vladykin N.V., Kalanshyk H.A., Medvedev N.S., Saprykin A.I., Downes H., Khmelnikova O.S., 2021. Incompatible Element Enriched Mantle Lithosphere beneath Kimberlite Pipes in Priazovie, Ukrainian Shield: Volatile-Enriched Focused Mantle Flow and Connection to Mature Crust? International Geology Review 63 (10), 1288‒1309. https://doi.org/10.1080/00206814.2020.1761893.
6. Bibikova E.V., Bogdanova S.V., Postnikov A.P., Fedotova A.A., Claesson S., Kirnozova T.I., Fuzgan M.M., Popova L.P., 2015. The Early Crust of the Volgo-Uralian Segment of the East European Craton: Isotope-Geochronological Zirconology of Metasedimentary Rocks of the Bolshecheremshanskaya Formation and Their Sm-Nd Model Ages. Stratigraphy and Geological Correlation 23, 1‒23. https://doi.org/10.1134/S0869593815010037.
7. Bibikova E.V., Bogdanova S.V., Postnikov A.V., Popova L.P., Kirnozova T.I., Fugzan M.M., Glushchenko V.V., 2009. Sarmatia-Volgo-Uralia Junction Zone: Isotopic Geochronologic Characteristic of Supracrustal Rocks and Granitoids. Stratigraphy and Geological Correlation 17, 561‒573. https://doi.org/10.1134/S086959380906001X.
8. Bibikova E.V., Claesson S., Fedotova A.A., Artemenko G., Ilyinsky L., 2010. Early Archean Crust of the Middle Dnepr and Azov Domains, Ukrainian Shield – Evidence from Ages of Detrital Zircons in Mesoarchean Greenstone Belts. American Journal of Science 310 (10), 1595–1622. https://doi.org/10.2475/10.2010.13.
9. Богданова С.В. Земная кора Русской плиты в раннем докембрии (на примере Волго-Уральского сегмента). М.: Наука, 1986. 228 с.
10. Bogdanova S.V., 1993. Segments of the East European Craton. In: D.G. Gee, M. Beckholmen (Eds), EUROPROBE 1991, Jablonna. Państwowe Wydawnictwo Naukowe, Warszawa, p. 33–38.
11. Bogdanova S.V., Belousova E., De Waele B., Larionov A.N., Piazolo S., Postnikov A.V., Samsonov A.V., 2021. Palaeoproterozoic Reworking of Early Archaean Lithospheric Blocks: Rocks and Zircon Records from Charnockitoids in Volgo-Uralia. Precambrian Research 360, 106224. https://doi.org/10.1016/j.precamres.2021.106224.
12. Bogdanova S.V., Bingen B., Gorbatschev R., Kheraskova T.N., Kozlov V.I., Puchkov V.N., Volozh Y.A., 2008. The East European Craton (Baltica) Before and during the Assembly of Rodinia. Precambrian Research 160 (1–2), 23–45. https://doi.org/10.1016/j.precamres.2007.04.024.
13. Bogdanova S.V., De Waele B., Bibikova E.V., Belousova E.A., Postnikov A.V., Fedotova A.A., Popova L.P., 2010. Volgo-Uralia: The First U-Pb, Lu-Hf and Sm-Nd Isotopic Evidence of Preserved Paleoarchean Crust. American Journal of Science 310 (10), 1345–1383. https://doi.org/10.2475/10.2010.06.
14. Bogdanova S.V., Gorbatschev R., Garetsky R.G., 2016. EUROPE | East European Craton. In: E. Scott (Ed.), Reference Module in Earth Systems and Environmental Sciences. Elsevier, Amsterdam, p. 1–18. https://doi.org/10.1016/B978-0-12-409548-9.10020-X.
15. Bogdanova S.V., Pashkevich I.K., Gorbatchev R., Orlyuk M.I., 1996. Riphean Rifting and Major Palaeproterozoic Crustal Boundaries in the Basement of the East European Craton: Geology and Geophysics. Tectonophysics 268 (1–4), 1–21. https://doi.org/10.1016/S0040-1951(96)00232-6.
16. Brown M., 2009. Metamorphic Patterns in Orogenic Systems and the Geological Record. In: P.A. Cawood, A. Kröner (Eds), Earth Accretionary Systems in Space and Time. Geological Society, London, Special Publications 318, 37–74, https://doi.org/10.1144/SP318.2.
17. Cagnard F., Barbey P., Gapais D., 2011. Transition between "Archaean-Type" and "Modern-Type" Tectonics: Insights from the Finnish Lapland Granulite Belt. Precambrian Research 187 (1–2), 127–142. https://doi.org/10.1016/j.precamres.2011.02.007.
18. Cagnard F., Durrieu N., Gapais D., Brun J.-P., Ehlers C., 2006. Crustal Thickening and Lateral Flow during Compression of Hot Lithospheres, with Particular Reference to Precambrian Times. Terra Nova 18 (1), 72–78. https://doi.org/10.1111/j.1365-3121.2005.00665.x.
19. Cawood P.A., Kröner A., Collins W.G., Kusky T.М., Mooney W.D., Windley B.F., 2009. Accretionary Orogens through Earth History. In: P.A. Cawood, A. Kröner (Eds), Earth Accretionary Systems in Space and Time. Geological Society, London, Special Publications 318, 1–36. https://doi.org/10.1144/SP318.1.
20. Chardon D., Gapais D., Cagnard F., 2009. Flow of Ultra-Hot Orogens: A View from the Precambrian, Clues for the Phanerozoic. Tectonophysics 477 (3–4), 105–118. https://doi.org/10.1016/j.tecto.2009.03.008.
21. Чернышов Н.М., Пономаренко А.Н., Бартницкий Е.Н. Новые данные о возрасте никеленосных дифференцированных плутонов Воронежского кристаллического массива // Доклады Академии наук Украинской ССР. Серия Б: Геологические, химические и биологические науки. 1990. № 6. С. 11–19.
22. Claesson S., Bibikova E., Bogdanova S., Skobelev V., 2006. Archean Terranes, Paleoproterozoic Reworking and Accretion in the Ukrainian Shield, East European Craton. Geological Society, London, Memoirs 32, 645–654. https://doi.org/10.1144/GSL.MEM.2006.32.01.38.
23. Condie K.C., Kröner A., 2013. The Building Blocks of Continental Crust: Evidence for a Major Change in the Tectonic Setting of Continental Growth at the End of the Archean. Gondwana Researh 23 (2), 394–402. https://doi.org/10.1016/j.gr.2011.09.011.
24. Daly J.S., Balagansky V.V., Timmerman M.J., Whitehouse M.J., 2006. The Lapland-Kola Orogen: Palaeoproterozoic Collision and Accretion of the Northern Fennoscandian Lithosphere. Memoirs Geological Society 32, 579–598. https://doi.org/10.1144/GSL.MEM.2006.032.01.35.
25. DeCelles G., Giles K.N., 1996. Foreland Basin Systems. Basin Research 8 (2), 105–123. https://doi.org/10.1046/j.1365-2117.1996.01491.x.
26. Defant M.J., Drummond M.S., 1993. Mount St. Helens: Potential Example of the Partial Melting of the Subducted Lithosphere in a Volcanic Arc. Geology 21 (6), 541‒550. https://doi.org/10.1130/0091-7613(1993)021%3C0547:MSHPEO%3E2.3.CO;2.
27. Defant M.J., Jackson T.E., Drummond M.S., de Boer J.Z., Bellon H., Feigenson M.D., Maury R.C., Stewart R.H., 1992. The Geochemistry of Young Volcanism throughout Western Panama and Southeastern Costa Rica: An Overview. Geological Society London Journal 149, 569–579. https://doi.org/10.1144/gsjgs.149.4.0569.
28. England P.C., Thompson A.B., 1984. Pressure-Temperature-Time Paths of Regional Metamorphism I. Heat Transfer during Evolution of Regions of Thickened Continental Crust. Journal of Petrology 25 (4), 894–928. https://doi.org/10.1093/petrology/25.4.894.
29. Fedotova A.A., Bogdanova S.V., Claesson S., Anosova M.O., Postnikov A.V., Fugzan M.M., Kirnozova T.I., 2019. New Data on the Paleoproterozoic Age of Metamorphism in the Yelabuga Deformation Zone of Volgo-Uralia, East European Craton. Doklady Earth Sciences 488, 1123–1127. https://doi.org/10.1134/S1028334X19090241.
30. Fossen H., Cavalcante G.C., Almeida R.P., 2017. Hot versus Cold Orogenic Behavior: Comparing the Araçuaí-West Congo and the Caledonian Orogens. Tectonics 36 (10), 2159–2178. https://doi.org/10.1002/2017TC004743.
31. Gapais D., Cagnard F., Gueydan F., Barbery P., Ballevre M., 2009. Mountain Buildingand Exhumation Processes through Time: Inferences from Nature and Models. Terra Nova 21 (3), 188–194. https://doi.org/10.1111/j.1365-3121.2009.00873.x.
32. Gee D.G., Bogolepova O.K., Lorenz. H., 2006. The Timanide, Caledonite and Uralide Orogens in the Euroasian High Arctic, and Relationships to the Paleocontinents Laurentia, Baltica and Siberia. London Memoirs Geological Society 32, 507–520.
33. Gerya T., 2014. Precambrian Geodynamics: Concepts and Models. Gondwana Research 25 (2), 442–463. https://doi.org/10.1016/j.gr.2012.11.008.
34. Gorbatschev R., Bogdanova S., 1993. Frontiers in the Baltic Shield. Precambrian Research 64 (1–4), 3–21. https://doi.org/10.1016/0301-9268(93)90066-B.
35. Griffin W.L., O’Reilly S.Y., Afonso J.C., Begg G.C., 2009. The Composition and Evolution of Lithospheric Mantle: A Re-Evaluation and Its Tectonic Implications. Journal of Petrology 50 (7), 1185‒1204. https://doi.org/10.1093/petrology/egn033.
36. Herzberg C., Condie K., Korenaga J., 2010. Thermal History of the Earth and Its Petrological Expression. Earth Planetary Science Letters 292 (1–2), 79–88. https://doi.org/10.1016/j.epsl.2010.01.022.
37. Hyndman R.D., 2017. Lower-Crustal Flow and Detachment in the North American Cordillera: A Consequence of Cordillera-Wide High Temperatures. Geophysical Journal International 209 (3), 1779–1799. https://doi.org/10.1093/gji/ggx138.
38. Hyndman R.D., Currie C.A., 2011. Why Is the North America Cordillera High? Hot Backarcs, Thermal Isostasy, and Mountain Belts. Geology 39 (8), 783–786. https://doi.org/10.1130/G31998.1.
39. Ilchenko T., 1996. Dniepr-Donets Rift: Deep Structure and Evolution from DSS Profiling. Tectonophysics 268 (1–4), 83‒98. https://doi.org/10.1016/S0040-1951(96)00221-1.
40. Jamieson R.A., Beaumont C., 2013. On the Origin of Orogens. GSA Bulletin 125 (11–12), 1671–1702. https://doi.org/10.1130/B30855.1.
41. Kapp P., DeCelles P.G., 2019. Mesozoic-Cenozoic Geological Evolution of the Himalayan-Tibetan Orogen and Working Tectonic Hypotheses. American Journal Sciences 319 (3), 159‒254. https://doi.org/10.2475/03.2019.01.
42. Kapp P., Murphy M.A., Yin A., Harrison T.M., Ding L., Guo J.H., 2003. Mesozoic and Cenozoic Tectonic Evolution of the Shiquanhe Area of Western Tibet. Tectonics 22 (4), 1029. https://doi.org/10.1029/2001tc001332.
43. Korja A., Heikkinen P., 2005. The Accretionary Svecofennian Orogen – Insight from the Babel Profiles. Precambrian Research 136 (3–4), 241–268. https://doi.org/10.1016/j.precamres.2004.10.007.
44. Kostyuchenko S.L., Egorkin A.V., Solodilov L.N., 1999. Structure and Genetic Mechanisms of the Precambrian Rifts of the East-European Platform in Russia by Integrated Study of Seismic, Gravity, and Magnetic Data. Tectonophysics 313 (1–2), 9‒28. https://doi.org/10.1016/S0040-1951(99)00187-0.
45. Kusznir N.J., Stovba S.M., Stevenson R.A., Poplavsky K.N., 1996. The Formation of the Northwestern Dniepr-Donets Basin, 2-D Forward Model and Revers Syn-Rift and Post-Rift Modelling. Tectonophysics 268 (1–4), 237‒255. https://doi.org/10.1016/S0040-1951(96)00230-2.
46. Kuznetsov N.B., Belousova E.A., Alekseev A.S., Romanyuk T.V., 2014. New Data on Detrital Zircons from the Sandstones of the Lower Cambrian Brusov Formation (White Sea Region, East-European Craton): Unravelling the Timing of the Onset of the Arctida–Baltica Collision. International Geology Review 56 (16), 1945‒1963. https://doi.org/10.1080/00206814.2014.977968.
47. Lahtinen R., Huhma H., 2019. A Revised Geodynamic Model for the Lapland-Kola Orogen. Precambrian Research 330, 1‒19. https://doi.org/10.1016/j.precamres.2019.04.022.
48. Lehtonen M., O’Brian H., 2009. Mantle Transect of the Karelian Craton from Margin to Core Based on P-T Data from Garnet and Clinopyroxene Xenocrysts in Kimberlites. Bulletin Geological Society Finland 81, 79–102.
49. Mahotkin I.L., Gibson S.A., Thompson R.N., Zhuravlev D.Z., Zherdev P.U., 2000. Late Devonian Diamondiferous Kimberlite and Alkaline Picrite (Proto-Kimberlite?) Magmatism in the Arkhangelsk Region, NW Russia. Journal of Petrology 41 (2), 201–227. https://doi.org/10.1093/petrology/41.2.201.
50. Martin H., Moyen J.-F., Martin Guitreau M., Blichert-Toft J., Le Pennec J.-L., 2014. Why Archaean TTG Cannot Be Generated by MORB Melting in Subduction Zones. Lithos 198–199, 1‒13. https://doi.org/10.1016/j.lithos.2014.02.017.
51. Martin H., Smithies R.H., Rapp R., Moyen J.-F., Champion D., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG) and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos 79 (1–2), 1−24. https://doi.org/10.1016/j.lithos.2004.04.048.
52. McKenzie D., Nimmo F., Jackson J.A., Gans P.B., Miller E.L., 2000. Characteristics and Consequences of Flow in the Lower Crust. Journal of Geophysical Research: Solid Earth 105 (В5), 11029–11046. https://doi.org/10.1029/1999JB900446.
53. McKenzie D., Priestley K., 2008. The Influence of Lithospheric Thickness on Continental Evolution. Lithos 102 (1–2), 1–11. https://doi.org/10.1016/j.lithos.2007.05.005.
54. McKenzie D., Priestley K., 2016. Speculations on the Formation of Cratons and Cratonic Basins. Earth Planetary Science Letters 435, 94‒104. https://doi.org/10.1016/j.epsl.2015.12.010.
55. Mints M.V., Dokukina K.A., Konilov A.N., Philippova I.B., Zlobin V.L., Babayants P.S., Belousova E.A., Blokh Y.I. et al., 2015. East European Craton: Early Precambrian History and 3D Models of Deep Crustal Structure. Geological Society of America Special Paper 510, 433 p. https://doi.org/10.1130/SPE510.
56. Минц М.В., Сулейманов А.К., Бабаянц П.С., Белоусова Е.А., Блох Ю.И., Богина М.М., Буш В.А., Докукина К.А. и др. Глубинное строение, эволюция и полезные ископаемые раннедокембрийского фундамента Восточно-Европейской платформы: Интерпретация материалов по опорному профилю 1-ЕВ, профилям 4В и ТАТСЕЙС. М.: ГЕОКАРТ, ГЕОС, 2010. Т. 1. 408 с.
57. Nironen M., 1997. The Svekofennian Orogen: A Tectonic Model. Precambrian Research 86 (1–2), 21–44. https://doi.org/10.1016/S0301-9268(97)00039-9.
58. Peltonen P., Brügmann G., 2006. Origin of Layered Continental Mantle (Karelian Craton, Finland): Geochemical and Re-Os Isotope Constraints. Lithos 89 (3–4), 405–423. https://doi.org/10.1016/j.lithos.2005.12.013.
59. Perchuk A.L., Safonov O.G., Smit C.A., van Reenen D.D., Zakharov V.S., Gerya T.V., 2018. Precambrian Ultra-Hot Orogenic Factory: Making and Reworking of Continental Crust. Tectonophysics 746, 572‒586. https://doi.org/10.1016/j.tecto.2016.11.041.
60. Ryan P.D., Dewey J.F., 2019. The Ordovician Grampian Orogeny, Western Ireland: Obduction versus "Bulldozing" during Arc-Continent Collision. Tectonics 38 (9), 3462–3475. https://doi.org/10.1029/2019TC005602.
61. Савко К.А., Самсонов А.В., Базиков Н.С., Ларионова Ю.О., Хиллер В.В., Вотяков С.Л., Скрябин В.Ю., Козлова Е.Н. Гранитоиды востока Воронежского кристаллического массива: геохимия, Th-U-Pb возраст и петрогенезис // Вестник ВГУ. Серия: Геология. 2011. № 2. С. 98–115.
62. Savko K.A., Samsonov A.V., Kholina N.V., Larionov A.N., Zaitseva M.V., Korish E.H., Bazikov N.S., Terentiev R.A., 2019. 2.6 Ga High-Si Rhyolites and Granites in the Kursk Domain, Eastern Sarmatia: Petrology and Application for the Archean Palaeocontinental Correlations. Precambrian Research 322, 170‒192. https://doi.org/10.1016/j.precamres.2019.01.006.
63. Savko K.A., Samsonov A.V., Kotov A.B., Sal’nikova E.B., Korish E.H., Larionov A.N., Anisimova I.V., Bazikov N.S., 2018. The Early Precambrian Metamorphic Events in Eastern Sarmatia. Precambrian Reseach 311, 1–23. https://doi.org/10.1016/j.precamres.2018.04.009.
64. Savko K.A., Samsonov A.V., Larionov A.N., Chervyakovskaya M.V., Korish E.H., Larionova Yu.O., Bazikov N.S., Tsybulyaev S.V., 2021. A Buried Paleoarchean Core of the Eastern Sarmatia, Kursk Block: U-Pb, Lu-Hf and Sm-Nd Isotope Mapping and Paleotectonic Application. Precambrian Research 353, 106021. https://doi.org/10.1016/j.precamres.2020.106021.
65. Savko K.A., Samsonov A.V., Larionov A.N., Larionova Yu.O., Bazikov N.S., 2014. Paleoproterozoic A- and S-granites in the Eastern Voronezh Crystalline Massif: Geochronology, Petrogenesis, and Tectonic Setting of Origin. Petrology 22, 235‒264. https://doi.org/10.1134/S0869591114030059.
66. Shchipansky A.A., Bogdanova S.V., 1996. The Sarmatian Crustal Segment: Precambrian Correlation between the Voronezh Massif and the Ukrainian Shield across the Dniepr-Donets Aulacogen. Tectonophysics 268 (1–4), 109‒126. https://doi.org/10.1016/S0040-1951(96)00227-2.
67. Shchipansky A.A., Samsonov A.V., Petrova A.Yu., Larionova Yu.O., 2007. Geodynamics of the Eastern Margin of Sarmatia in the Paleoproterozoic. Geotectonics 41, 38‒62. https://doi.org/10.1134/S0016852107010050.
68. Sizova E., Gerya T., Brown M., 2014. Contrasting Styles of Phanerozoic and Precambrian Continental Collision. Gondwana Research 25 (2), 522–545. https://doi.org/10.1016/j.gr.2012.12.011.
69. Соколов В.Б. Восточно-Европейская платформа // Геотраверс «ГРАНИТ»: Восточно-Европейская платформа – Урал – Западная Сибирь (строение земной коры по результатам комплексных геолого-геофизических исследований) / Ред. С.Н. Кашубин. Екатеринбург: Баженовская геофизическая экспедиция, 2002. С. 226‒250.
70. Stern R.J., 2005. Evidence from Ophiolites, Blueschists and Ultrahigh-Pressure Metamorphic Terranes That the Modern Episode of Subduction Tectonics Began in Neoproterozoic Time. Geology 33 (7), 557–560. https://doi.org/10.1130/G21365.1.
71. Stovba S., Stephenson R.A., Kivshik M., 1996. Structural Features and Evolution of the Dniepr-Donets Basin, Ukraine, from the Regional Reflection Profiles. Tectonophysics 268 (1–4), 127‒147. https://doi.org/10.1016/S0040-1951(96)00222-3.
72. Terentiev R.A., Savko K.A., Petrakova M.E., Santosh M., Korish E.N., 2020. Paleoproterozoic Granitoids of the Don Terrane, East-Sarmatian Orogen: Age, Magma Source and Tectonic Implications. Precambrian Research 346, 105790. https://doi.org/10.1016/j.precamres.2020.105790.
73. Terentiev R.A., Savko K.A., Santosh M., Korish E.H., Sarkisyan L.S., 2016. Paleoproterozoic Granitoids of the Losevo Terrane, East European Craton: Age, Magma Source and Tectonic Implications. Precambrian Research 287, 48‒72. https://doi.org/10.1016/j.precamres.2016.10.015.
74. Trofimov V.A., 2006. Deep CMP Seismic Surveying along the Tatseis-2003 Geotraverse across the Volga-Ural Petroliferous Province. Geotectonics 40, 249‒262. https://doi.org/10.1134/S0016852106040017.
75. Weller O.M., Mottram C.M., St-Onge M.R., Möller C., Strachan R., Rivers T., Copley A., 2021. The Metamorphic and Magmatic Record of Collisional Orogens. Nature Reviews Earth & Environment 2, 781–799. https://doi.org/10.1038/s43017-021-00218-z.
76. Willett S.D., Beaumont C., 1994. Subduction of Asian Lithospheric Mantle beneath Tibet Inferred from Models of Continental Collision. Nature 369, 642‒645. https://doi.org/10.1038/369642a0.
77. Willett S., Beaumont C., Fullsack P., 1993. Mechanical Model for the Tectonics of Doubly Vergent Compressional Orogens. Geology 21 (4), 371–374. https://doi.org/10.1130/0091-7613(1993)021%3C0371:MMFTTO%3E2.3.CO;2.
78. Wilson M., Lyashkevitch Z.М., 1996. Magmatism and the Geodynamics of Rifting of the Pripyat-Dnieper-Donets Rift, East European Platform. Tectonophysics 268 (1–4), 65‒82. https://doi.org/10.1016/S0040-1951(96)00234-X.
79. Windley B., 1992. Proterozoic Collisional and Accretionary Orogens. Developments in Precambrian Geology 10, 419–446. https://doi.org/10.1016/S0166-2635(08)70125-7.
80. Wolf S.G., Huismans R.S., Munoz J.-A., Curry M.E., van der Beek P., 2021. Growth of Collisional Orogens from Small and Cold to Large and Hot – Inferences from Geodynamic Models. Journal Geophysical Research: Solid Earth 126 (2), e2020JB021168. https://doi.org/10.1029/2020JB021168.
81. Yin A., Harrison T.M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences 28, 211‒280. https://doi.org/10.1146/annurev.earth.28.1.211.
Рецензия
Для цитирования:
Щипанский А.А., Хераскова Т.Н. ВОЛГО-ДОНСКОЙ КОЛЛИЗИОННЫЙ ОРОГЕН ВОСТОЧНО-ЕВРОПЕЙСКОГО КРАТОНА КАК ПАЛЕОПРОТЕРОЗОЙСКИЙ АНАЛОГ ГИМАЛАЙ-ТИБЕТСКОГО ОРОГЕНА. Геодинамика и тектонофизика. 2023;14(2). https://doi.org/10.5800/GT-2023-14-2-0692
For citation:
Shchipansky A.A., Kheraskova T.N. THE VOLGA-DON COLLISIONAL OROGEN IN THE EAST EUROPEAN CRATON AS THE PALEOPROTEROZOIC ANALOGUE OF THE HIMALAYAN-TIBETAN OROGEN. Geodynamics & Tectonophysics. 2023;14(2). https://doi.org/10.5800/GT-2023-14-2-0692