ANALYSIS OF DEFORMATION PROCESSES IN THE LITHOSPHERE FROM GEODETIC MEASUREMENTS BASED ON THE EXAMPLE OF THE SAN ANDREAS FAULT
https://doi.org/10.5800/GT-2012-3-3-0074
Abstract
Analysis of data from permanent GPS observation stations located in tectonically active regions provides for direct observation of deformation processes of the earth's surface which result from elastic interaction of the lithospheric plates and also occur when accumulated stresses are released by seismic events and postseismic processes.
This article describes the methodology of applying the regression analysis of time series of data from GPS-stations for identification of individual components of the stations’ displacements caused by the influence of various deformation processes. Modelling of the stations’ displacements caused only by deformations of the marginal zone, wherein the lithospheric plates interact, allows us to study variations of the steady-state deformation in the marginal zone.
he proposed methodology is applied to studies of variations of fields of cumulative surface displacements, surface displacement velocity and maximum shear strain velocity which are determined from the GPS data recorded prior to the Parkfield earthquake of 28 September 2004 (Mw=6.0).
Combined analysis of the variations of the above-mentioned fields shows that measurable anomalies of the elastic deformation of the transform fault’s edge took place prior to the seismic event of 28 September 2004, and such anomalies were coincident in space and time with the focal area of the future seismic event.
About the Author
Yury V. GabsatarovRussian Federation
Junior Researcher,
189 Lenin street, Obninsk 249035
References
1. Altamimi Z., 2006. Station positioning and the ITRF. In: Proceedings of the 15th International workshop on laser ranging, Canberra, Australia, October 15–20, 2006. Available from: http://cddis.gsfc.nasa.gov/lw15/docs/papers/Station Positioning and the ITRF.pdf.
2. Altamimi Z., Collilieux X., Legrand J., Garayt B., Boucher С., 2007. ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth orientation parameters. Journal of Geophysical Research 112 (B9), B09401. http://dx.doi.org/10.1029/2007JB004949.
3. Bakun W.H., Aagaard B., Dost B., Ellsworth W.L., Hardebeck J.L., Harris R.A., Ji C., Johnston M.J.S., Langbein J., Lienkaemper J.J., Michael A.J., Murray J.R., Nadeau R.M., Reasenberg P.A., Reichle M.S., Roeloff E.A., Shakal A., Simpson R.W., Waldhauser F., 2005. Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature 437 (7061), 969–974. http://dx.doi.org/10.1038/nature04067.
4. Bilham R., 1985. Southern San Andreas fault geometry and fault zone deformation: implications for earthquake prediction in the Coachella Valley, California. In: C.F. Shearer (Ed.), Minutes of the national earthquake prediction evaluation council, March 29–30, 1985, Pasadena, California. US Geological Survey Open File Report 85–507, p. 44–65.
5. DeMets C., Gordon R.G., Argus D.F., Stein S., 1990. Current plate motions. Geophysical Journal International 101 (2), 425–478. http://dx.doi.org/10.1111/j.1365-246X.1990.tb06579.x.
6. DeMets C., Gordon R.G., Argus D.F., Stein S., 1994. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophysical Research Letters 21 (20), 2191–2194. http://dx.doi.org/10.1029/94GL02118.
7. Freed A.M., 2007. Afterslip (and only afterslip) following the 2004 Parkfield, California, earthquake. Geophysical Research Letters 34 (6), L06312. http://dx.doi.org/10.1029/2006GL029155.
8. Herring T.A., King R.W., McClusky S.C., 2006. GAMIT/GLOBK Reference Manual Release 10.3, MIT. 2006. Available from: http://chandler.mit.edu/~simon/gtgk/docs.htm.
9. Johanson I.A., Bürgmann R., 2010. Coseismic and postseismic slip from the 2003 San Simeon earthquake and their effects on backthrust slip and the 2004 Parkfield earthquake. Journal of Geophysical Research 115 (B7), B07411. http://dx.doi.org/10.1029/2009JB006599.
10. Kogan M.G., Steblov G.M., 2008. Current global plate kinematics from GPS (1995–2007) with the plate-consistent reference frame. Journal of Geophysical Research 113 (B4), B04416. http://dx.doi.org/10.1029/2007JB005353.
11. Kostyuk A.D., 2009. Studies of crustal deformation of the Northern Tien Shan based on earthquake focuses and space geodesy: Ph.D. Thesis. Institute of Physics of the Earth, Moscow, 167 p. (in Russian) [Костюк А.Д. Исследование современной деформации земной коры Северного Тянь-Шаня по данным очагов землетрясений и космической геодезии: Дис. … канд. физ.-мат. наук. M.: ИФЗ РАН, 2009. 167 с.].
12. Kuzmin Yu.O., 2009. Tectonophysics and recent geodynamics. Izvestiya, Physics of the Solid Earth 45 (11), 973–986. http://dx.doi.org/10.1134/S1069351309110056.
13. Le Pichon X., 1968. Sea-floor spreading and continental drift. Journal of Geophysical Research 73 (12), 3661–3697. http://dx.doi.org/10.1029/JB073i012p03661.
14. Marone C.J., Scholtz C.H., Bilham R.G., 1991. On the mechanics of earthquake afterslip. Journal of Geophysical Research 96 (B5), 8441–8452. http://dx.doi.org/10.1029/91JB00275.
15. Minster J.B., Jordan T.H., Molnar P., Haines E., 1974. Numerical modelling of instantaneous plate tectonics. Geophysical Journal of the Royal Astronomical Society 36 (3), 541–576. http://dx.doi.org/10.1111/j.1365-246X.1974.tb00613.x.
16. Nikolaidis R., 2002. Observation of geodetic and seismic deformation with the global positioning system: Ph.D. Thesis. University of California, San Diego, 305 p.
17. Okada Y., 1985. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America 75 (4), 1135–1154.
18. Pollitz F.F., 1997. Gravitational viscoelastic postseismic relaxation on a layered spherical earth. Journal of Geophysical Research 102 (B8), 17921–17941. http://dx.doi.org/10.1029/97JB01277.
19. Shen Z., Jackson D.D., Ge B.X., 1996. Crustal deformation across and beyond the Los Angeles Basin from geodetic measurements. Journal of Geophysical Research 101 (B12), 27957–27980. http://dx.doi.org/10.1029/96JB02544.
20. Steblov G.M., 2004. Large-scale geodynamics based on space geodesy: Doctoral Thesis. Institute of Physics of the Earth, Moscow, 203 p. (in Russian) [Стеблов Г.М. Крупномасштабная геодинамика на основе космической геодезии: Дис. … докт. физ.-мат. наук. М.: ИФЗ РАН, 2004. 203 с.].
21. Taira T., Silver P.G., Niu F., Nadeau R.M., 2009. Remote triggering of fault-strength changes on the San Andreas fault at Parkfield. Nature 461 (7264), 636–639. http://dx.doi.org/10.1038/nature08395.
Review
For citations:
Gabsatarov Yu.V. ANALYSIS OF DEFORMATION PROCESSES IN THE LITHOSPHERE FROM GEODETIC MEASUREMENTS BASED ON THE EXAMPLE OF THE SAN ANDREAS FAULT. Geodynamics & Tectonophysics. 2012;3(3):275-287. (In Russ.) https://doi.org/10.5800/GT-2012-3-3-0074