RESEARCH OF INTERACTIONS BETWEEN SHEAR FRACTURES ON THE BASIS OF APPROXIMATE ANALYTICAL ELASTIC SOLUTIONS
https://doi.org/10.5800/GT-2012-3-3-0073
Abstract
The article describes a method yielding approximate analytical solutions under the theory of elasticity for a set of interacting arbitrarily spaced shear fractures. Accurate analytical solutions of this problem are now available only for the simplest individual cases, such as a single fracture or two collinear fractures. A large amount of computation is required to yield a numerical solution for a case considering arbitrary numbers and locations of fractures, while this problem has important practical applications, such as assessment of the state of stress in seismically active regions, forecasts of secondary destruction impacts near systems of large faults, studies of reservoir properties of the territories comprising oil and gas provinces.
In this study, an approximate estimation is obtained with the following simplification assumptions: (1) functions showing shear of fractures’ borders are determined similar to the shear function for a single fracture, and (2) boundary conditions for the fractures are specified in the integrated form as mean values along each fracture. Upon simplification, the solution is obtained through the system of linear algebraic equations for unknown values of tangential stress drop. With this approach, the accuracy of approximate solutions is consistent with the accuracy of the available data on real fractures.
The reviewed examples of estimations show that the resultant stress field is dependent on the number, size and location of fractures and the sequence of displacements of the fractures’ borders.
About the Authors
Anastasia S. LermontovaRussian Federation
Junior Researcher,
10 Bol’shaya Gruzinskaya street, Moscow D-242 123995, GSP-5
Yuri L. Rebetsky
Russian Federation
Doctor of Physics and Mathematics, Head of M.V. Gzovsky Laboratory of Tectonophysics,
10 Bol’shaya Gruzinskaya street, Moscow D-242 123995, GSP-5
References
1. Basista М., Gross D., 2000. А note on crack interactions under compression. International Journal of Fracture 102 (3), 67–72. http://dx.doi.org/10.1023/A:1007644608705.
2. Byerlee J.D., 1967. Frictional characteristics of granite under high confining pressure. Journal of Geophysical Research 72 (14), 3639–3648. http://dx.doi.org/10.1029/JZ072i014p03639.
3. Byerlee J.D., 1978. Friction of rocks. Pure and Applied Geophysics 116 (4–5), 615–626. http://dx.doi.org/10.1007/BF00876528.
4. Chinnery M.A., 1961. The deformation of the ground around surface fault. Bulletin of the Seismological Society of America 51 (3), 355−372.
5. Chinnery M.A., 1963. The stress changes that accompany strike-slip faulting. Bulletin of the Seismological Society of America 53 (5), 921−932.
6. Cloos E., 1955. Experimental analysis of fracture patterns. Geological Society of America Bulletin 66 (3), 231–256. http://dx.doi.org/10.1130/0016-7606(1955)66[241:EAOFP]2.0.CO;2.
7. Cloos H., 1928. Experimente zur inneren Tektonik. Zentralblatt für Mineralogie, Geologie und Paläontologie, Abhandlungen B 12 (1928), 609–621.
8. Gakhov F.D., 1977. Marginal problems. Nauka, Moscow, 640 p. (in Russian) [Гахов Ф.Д. Краевые задачи. М.: Наука, 1977. 640 с.].
9. Horii H., Nemat-Nasser S., 1985. Elastic fields of interacting inhomogeneities. International Journal of Solids and Structures 21 (7), 731–745.
10. Kachanov M.L., 1972. Continually theory of faulting. Izvestiya AN SSSR. Mechanics of solid body 2, 54–59 (in Russian) [Качанов М.Л. К континуальной теории среды с трещинами // Известия АН СССР. Механика твердого тела. 1972. № 2. C. 54–59].
11. Kachanov M., 1993. Elastic solids with many cracks and related problems. Advances in Applied Mechanics 30, 259–445. http://dx.doi.org/10.1016/S0065-2156(08)70176-5.
12. Kostrov B.V., Friedman V.N., 1975. Mechanics of brittle fracturing under compression. In: Earthquake foci physics. Nauka, Moscow, p. 30–45 (in Russian) [Костров Б.В., Фридман В.Н. Механика хрупкого разрушения при сжатии // Физика очага землетрясений. М.: Наука, 1975. C. 30–45].
13. Landau L.D., Lifshitz E.M., 1986. Theory of elasticity. 3rd edition. Butterworth-Heinemann, Oxford, 195 p.
14. Li D.F., Li C.F., Shu S.Q., Wang Z.X., Lu J., 2008. A fast and accurate analysis of the interacting cracks in linear elastic solids. International Journal of Fracture 151 (2), 169–185. http://dx.doi.org/10.1007/s10704-008-9249-8.
15. Muskhelishvili N.I., 1966. Some basic problems of the mathematical theory of elasticity. Nauka, Moscow, 707 p. (in Russian) [Мусхелишвили Н.И. Некоторые основные задачи математической теории упругости. М.: Наука, 1966. 707 с.].
16. Nazarov S.A., Polyakova O.R., 1990. Stress intensity factors for parallel cracks lying close together in a plane region. Journal of Applied Mathematics and Mechanics 54 (1), 105–115. http://dx.doi.org/10.1016/0021-8928(90)90096-S.
17. Osokina D.N., 1987a. The relationship of displacement along faults with tectonic stress fields and some problems of rock mass destruction. In: Fields of stress and strain in the Earth’s crust. Nauka, Moscow, p. 120–135 (in Russian) [Осокина Д.Н. Взаимосвязь смещений по разрывам с тектоническими полями напряжений и некоторые вопросы разрушения горного массива // Поля напряжений и деформаций в земной коре. М.: Наука, 1987а. С. 120−135].
18. Osokina D.N., 1987b. On hierarchical properties of the tectonic stress field. In: Fields of stress and strain in the Earth’s crust. Nauka, Moscow, p. 136–151 (in Russian) [Осокина Д.Н. Об иерархических свойствах тектонического поля напряжений // Поля напряжений и деформаций в земной коре. М.: Наука, 1987б. С. 136−151].
19. Osokina D.N. 2000. The study of mechanisms of rock mass deformation in the fault zone on the basis of 3D stress field studies (mathematical modelling). In: Mikhail V. Gzovsky and development of tectonophysics. Nauka, Moscow, p. 220–245 (in Russian) [Осокина Д.Н. Исследование механизмов деформирования массива в зоне разрыва на основе изучения трехмерного поля напряжений (математическое моделирование) // М.В. Гзовский и развитие тектонофизики. М.: Наука, 2000. С. 220–245].
20. Osokina D.N., 2002. The stress field, destruction and mechanisms of the geological medium deformation in the fault zone (mathematical modeling). In: Tectonophysics today. Publishing House of Institute of Physics of the Earth RAS, Moscow, p. 129–174 (in Russian) [Осокина Д.Н. Поле напряжений, разрушение и механизмы деформирования геосреды в зоне разрыва (математическое моделирование) // Тектонофизика сегодня. М.: Изд-во ИФЗ РАН, 2002. С. 129–174].
21. Osokina D.N., Friedman V.N., 1987. The study of structural regularities of the stress field in the vicinity of the shear rupture with friction of its sides. In: Fields of stress and strain in the Earth’s crust. Nauka, Moscow, p. 74–119 (in Russian) [Осокина Д.Н., Фридман В.Н. Исследование закономерностей строения поля напряжений в окрестностях сдвигового разрыва с трением между берегами // Поля напряжений и деформаций в земной коре. М.: Наука, 1987. С. 74−119].
22. Panasyuk V.V., 1968. The limit equilibrium of brittle bodies with fractures. Naukova Dumka, Kiev, 246 p. (in Russian) [Панасюк В.В. Предельное равновесие хрупких тел с трещинами. Киев: Наукова Думка, 1968. 246 с.].
23. Panin V.E., 1998. Fundamentals of physical mesomechanics. Fizicheskaya mezomekhanika 1 (1), 5–22 (in Russian) [Панин В.Е. Основы физической мезомеханики // Физическая мезомеханика. 1998. Т. 1. № 1. С. 5−22].
24. Rebetskii Yu.L., Lermontova A.S., 2010. Analytical solution of the problem for a set of shear fractures with coulomb friction. Doklady Earth Sciences 435 (2), 1698–1703. http://dx.doi.org/10.1134/S1028334X10120305.
25. Rebetsky Yu.L., 2008. Mechanism of tectonic stress generation in the zones of high vertical movements. Fizicheskaya mezomekhanika 11 (1), 66–73 (in Russian) [Ребецкий Ю.Л. Механизм генерации тектонических напряжений в областях больших вертикальных движений // Физическая мезомеханика. 2008. Т. 11. № 1. С. 66–73].
26. Rebetsky Yu.L., Mikhailova A.V., 2011. The role of gravity in formation of deep structure of shear zones. Geodynamics & Tectonophysics 2 (1), 45–67. http://dx.doi.org/10.5800/GT-2011-2-1-0033.
27. Rebetsky Yu.L., Osokina D.N., Ektov V.V., 2002. An approximate solution of the elasticity problem for a set of shear fractures. In: Tectonophysics today. Publishing House of Institute of Physics of the Earth RAS, Moscow, p. 173–185 (in Russian) [Ребецкий Ю.Л., Осокина Д.Н., Эктов В.В. О приближенном решении задачи теории упругости для совокупности сколовых трещин // Тектонофизика сегодня. М.: Изд-во ИФЗ РАН, 2002. C. 173–185].
28. Riedel W., 1929. Zur mechanic geologischer brucherscieinungnen. Zentralblatt für Mineralogie, Geologie und Paläontologie Abt. B. 30, 354–368.
29. Savruk M.P., 1981. The 2D problem of elasticity for bodies with farctures. Naukova Dumka, Kiev, 323 p. (in Russian) [Саврук М.П. Двухмерные задачи упругости для тел с трещинами. Киев: Наукова Думка, 1981. 323 с.].
30. Sobolev G.A., Ponomarev A.V., 2003. Physics of earthquakes and precursors. Nauka, Moscow, 269 p. (in Russian) [Соболев Г.А., Пономарев А.В. Физика землетрясений и предвестники. М.: Наука, 2003. 269 с.].
31. Vakulenko A.A., Kachanov M.L., 1971. Continually theory of faulting. Izvestiya AN SSSR. Mechanics of solid body 4, 159–167 (in Russian) [Вакуленко А.А., Качанов M.Л. Континуальная теория среды с трещинами // Известия АН СССР. Механика твердого тела. 1971. № 4. C. 159–167].
Review
For citations:
Lermontova A.S., Rebetsky Yu.L. RESEARCH OF INTERACTIONS BETWEEN SHEAR FRACTURES ON THE BASIS OF APPROXIMATE ANALYTICAL ELASTIC SOLUTIONS. Geodynamics & Tectonophysics. 2012;3(3):239-274. (In Russ.) https://doi.org/10.5800/GT-2012-3-3-0073