Preview

Геодинамика и тектонофизика

Расширенный поиск

ВНУТРЕННЯЯ СТРУКТУРА РАЗЛОМНЫХ ЗОН: ПРОСТРАНСТВЕННО- ВРЕМЕННАЯ ЭВОЛЮЦИЯ НА ОСНОВЕ РЕЗУЛЬТАТОВ ФИЗИЧЕСКОГО МОДЕЛИРОВАНИЯ

https://doi.org/10.5800/GT-2012-3-3-0070

Полный текст:

Аннотация

На основе обобщения результатов экспериментов на моделях из влажной глины установлены главные закономерности эволюции сдвиговых и сбросовых зон, структура которых формируется неравномерно во времени и пространстве. Отражением пространственной неравномерности является регулярность в строении разломной зоны, связанная с чередованием в продольном направлении двух типов участков. В пределах участков 1-го типа сравнительно быстро формируется магистральный сместитель. Участки 2-го типа характеризуются длительной эволюцией структуры, существенной шириной, высокой плотностью разрывов и на заключительных этапах развития представлены релей-структурами. Отражением временной неравномерности является наличие стадий и подстадий развития разрывной сети, которые тесно взаимосвязаны. Каждой из трех главных стадий соответствуют строго определенные деформационное поведение субстрата и тип разрывной сети, что представлено в тектонофизической модели формирования разломной зоны, которая описана в конце статьи и проиллюстрирована примерами природных сбросов и сдвигов.

Об авторе

Константин Жанович Семинский
Институт земной коры СО РАН
Россия

докт. геол.-мин. наук, зав. лабораторией тектонофизики,

664033, Иркутск, ул. Лермонтова, 128



Список литературы

1. Ackermann R.V., Schlische R.W., Withjack M.O., 2001. The geometric and statistical evolution of normal fault systems: an experimental study of the effects of mechanical layer thickness on scaling laws. Journal of Structural Geology 23 (11), 1803–1819. http://dx.doi.org/10.1016/S0191-8141(01)00028-1.

2. Andre A.S., Sausse J., Lespinasse M., 2001. New approach for the quantification of paleostress magnitudes: application to the Soultz vein system (Rhine, France). Tectonophysics 336 (1–4), 215–231. http://dx.doi.org/10.1016/S0040-1951(01)00103-2.

3. Bartlett W.L., Friedman M., Logan J.M., 1981. Experimental folding of rocks under confining pressure. Part IX: wrench faults in limestone layers. Tectonophysics 79 (3–4), 255–277. http://dx.doi.org/10.1016/0040-1951(81)90116-5.

4. Ben-Zion Y., Sammis C.G., 2003. Characterization of fault zones. Pure and Applied Geophysics 160 (3–4), 677–715. http://dx.doi.org/10.1007/PL00012554.

5. Chorowicz J., Dhont D., Gundogdu N., 1999. Neotectonics in the eastern North Anatolian fault region (Turkey) advocates crustal extension: mapping from SAR ERS imagery and Digital Elevation Model. Journal of Structural Geology 21 (5), 511–532. http://dx.doi.org/10.1016/S0191-8141(99)00022-X.

6. Clifton A.E., Schlische R.W., 2001. Nucleation, growth, and linkage of faults in oblique rift zones: Results from experimental clay models and implications for maximum fault size. Geology 29 (5), 455–458. http://dx.doi.org/10.1130/0091-7613(2001)029<0455:NGALOF>2.0.CO;2.

7. Cobbold P.R., Ferguson C.C., 1979. Description and origin of spacial periodicity in tectonic structures: report on a Tectonic Studies group Conference held at Nottingam University. November, 1978. Journal of Structural Geology 1 (1), 93–97. http://dx.doi.org/10.1016/0191-8141(79)90025-7.

8. Garfunkel Z., Ben-Avraham Z., 1996. The structure of the Dead Sea Basin. Tectonophysics 226 (1–4), 155–176. http://dx.doi.org/10.1016/S0040-1951(96)00188-6.

9. Gibbs A.D., 1984. Structural evolution of extensional basin margins. Journal of the Geological Society 141 (4), 609–620. http://dx.doi.org/10.1144/gsjgs.141.4.0609.

10. Guohai J., Groshong Jr. R.H., 2006. Trishear kinematic modeling of extensional fault-propagation folding. Journal of Structural Geology 28 (1), 170–183. http://dx.doi.org/10.1016/j.jsg.2005.09.003.

11. Gzovsky M.V., 1975. Fundamentals of Tectonophysics. Nauka, Moscow, 536 р. (in Russian) [Гзовский М.В. Основы тектонофизики. М.: Наука, 1975. 536 с.].

12. Kearey P. (Ed.), 1993. The encyclopedia of the solid Earth sciences. Backwell Science, Oxford, 713 p.

13. Kim Y.-S., Peacock D.C.P., Sanderson D.J., 2003. Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta. Journal of Structural Geology 25 (5), 793–812. http://dx.doi.org/10.1016/S0191-8141(02)00200-6.

14. Kim Y.-S., Peacock D.C.P., Sanderson D.J., 2004. Fault damage zones. Journal of Structural Geology 26 (3), 503–517. http://dx.doi.org/10.1016/j.jsg.2003.08.002.

15. Kim Y.-S., Sanderson D.J., 2004. Similarities between strike-slip faults at different scales and a simple age determining method for active faults. The Island Arc 13 (1), 128–143. http://dx.doi.org/10.1111/j.1440-1738.2003.00410.x.

16. Knott S.D., Beach A., Brockbank P.J., Brown J.L., McCallum J.E., Welbon A.I., 1996. Spatial and mechanical controls on normal fault populations. Journal of Structural Geology 18 (2–3), 359–377. http://dx.doi.org/10.1016/S0191-8141(96)80056-3.

17. Koronovsky N.V., Gogonenkov G.N., Goncharov M.A., Timurziev A.I., Frolova N.S., 2009. Role of shear along horizontal plane in the formation of helicoidal structures. Geotectonics 43 (5), 357−379. http://dx.doi.org/10.1134/S0016852109050033.

18. Lobatskaya R.M., 1987. Structural zonation of faults. Nedra, Moscow, 128 p. (in Russian) [Лобацкая Р.M. Структурная зональность разломов. М.: Недра, 1987. 128 с.].

19. Logatchev N.A. (Ed.), Levi K.G., Plyusnina L.V., Sherman S.I., 1983. The map of neotectonics of the Baikal-Amur Railway Region. Scale 1:3,000,000. Irkutsk (in Russian) [Логачев Н.А. (ред.), Леви К.Г., Плюснина Л.В., Шерман С.И. Карта неотектоники региона Байкало-Амурской магистрали. Масштаб 1:3000000. Иркутск, 1983].

20. Makarov V.I., Shchukin Yu.K., 1979. Hidden fault activity assessment. Geotektonika 1, 96–109 (in Russian) [Макаров В.И., Щукин Ю.К. Оценка активности скрытых разломов // Геотектоника. 1979. № 1. С. 96–109].

21. Mandl G., 1988. Mechanics of tectonic faulting. Models and basic concepts. Elsevier, Amsterdam, 407 р.

22. Mikhailova A.V., 1971. The method of quantitative analysis of displacements, deformation and stresses in plastic nontransparent models. In: Tectonophysics and Mechanical Properties of Rocks. Nauka, Moscow, p. 38–48 (in Russian) [Михайлова A.В. Методика количественной оценки перемещений, деформаций и напряжений в пластических непрозрачных моделях // Тектонофизика и механические свойства горных пород. М.: Наука, 1971. С. 38–48].

23. Monaco C., Tortorici L., 2000. Active faulting in the Calabrian arc and eastern Sicily. Journal of Geodynamics 29 (3–5), 407–424. http://dx.doi.org/10.1016/S0264-3707(99)00052-6.

24. Moretti I., Sakellariou D., Lykousis V., Micarelli L., 2003. The Gulf of Corinth: an active half graben? Journal of Geodynamics 36 (1–2), 323–340. http://dx.doi.org/10.1016/S0264-3707(03)00053-X.

25. Norris R.J., Cooper A.F., 2003. Very high strains recorded in mylonites along the Alpine Fault, New Zealand: Implications for the deep structure of plate boundary faults. Journal of Structural Geology 25 (12), 2141–2157. http://dx.doi.org/10.1016/S0191-8141(03)00045-2.

26. Park R.G., 1997. Foundations of structural geology. Chapman & Hall, London, 202 p.

27. Plotnikov L.M., 1991. Shear structures in laminated geological bodies. Nedra, Leningrad, 151 р. (in Russian) [Плотников Л.М. Структуры сдвига в слоистых геологических телах. Л.: Недра, 1991. 151 c.].

28. Rosas F.M., Duarte J.C., Terrinha P., Valadares V., Matias L., 2009. Morphotectonic characterization of major bathymetric lineaments in Gulf of Cadiz (Africa–Iberia plate boundary): Insights from analogue modelling experiments. Marine Geology 261 (1–4), 33–47. http://dx.doi.org/10.1016/j.margeo.2008.08.002.

29. Seminsky K.Zh., 1990. General regularities of dynamics of structure formation in the large shear zones. Geologiya i Geofizika (Russian Geology and Geophysics) 4, 14–23 (in Russian) [Семинский K.Ж. Общие закономерности динамики структурообразования в крупных сдвиговых зонах // Геология и геофизика. 1990. № 4. С. 14–23].

30. Sherman S.I., Bornyakov S.A., Buddo V.Yu., 1983. Areas of dynamic influence of faults (modelling results). Nauka, Novosibirsk, 112 р. (in Russian) [Шерман С.И., Борняков С.А., Буддо В.Ю. Области динамического влияния разломов (результаты моделирования). Новосибирск: Наука, 1983. 112 с.].

31. Smith R.B., Bruhn R.L., 1984. Intraplate extensional tectonics of the eastern Basin-Range: inferences on structural style from seismic reflection data, regional tectonics, and thermal-mechanical models of brittle-ductile deformation. Journal of Geophysical Research 89 (B7), 5733–5762. http://dx.doi.org/10.1029/JB089iB07p05733.

32. Stephen D., McKinnon S.D., Barra I.G., 1998. Fracture initiation, growth and effect on stress field: a numerical investigation. Journal of Structural Geology 20 (12) 1673–1689. http://dx.doi.org/10.1016/S0191-8141(98)00080-7.

33. Sylvester A.G., 1988. Strike-slip faults. Geological Society of America Bulletin 100 (11), 1666–1703. http://dx.doi.org/10.1130/0016-7606(1988)100<1666:SSF>2.3.CO;2.

34. Tchalenko J.S., 1970. Similarities between shear zones of different magnitudes. Geological Society of America Bulletin 81 (6), 1625–1640. http://dx.doi.org/10.1130/0016-7606(1970)81[1625:SBSZOD]2.0.CO;2.

35. Walsh J.J., Childs C., Imber J., Manzocchia T., Wattersonb J., Nellc P.A.R., 2003. Strain localization and population changes during fault system growth within the Inner Moray Firth, Northern North Sea. Journal of Structural Geology 25 (2), 307–315. http://dx.doi.org/10.1016/S0191-8141(02)00028-7.

36. Walsh J.J., Watterson J., Bailey W.R., Childs C., 1999. Fault relays, bends and branch-lines. Journal of Structural Geology 21 (8–9), 1019–1026. http://dx.doi.org/10.1016/S0191-8141(99)00026-7.

37. Wilcox R.E., Harding T.P., Seely D.R., 1973. Basic wrench tectonics. American Association of Petroleum Geologists Bulletin 57 (1), 74–96. http://dx.doi.org/10.1306/819A424A-16C5-11D7-8645000102C1865D.

38. Woodcock N.H., Fischer M., 1986. Strike-slip duplexes. Journal of Structural Geology 8 (7), 725–735. http://dx.doi.org/10.1016/0191-8141(86)90021-0.


Для цитирования:


Семинский К.Ж. ВНУТРЕННЯЯ СТРУКТУРА РАЗЛОМНЫХ ЗОН: ПРОСТРАНСТВЕННО- ВРЕМЕННАЯ ЭВОЛЮЦИЯ НА ОСНОВЕ РЕЗУЛЬТАТОВ ФИЗИЧЕСКОГО МОДЕЛИРОВАНИЯ. Геодинамика и тектонофизика. 2012;3(3):183-194. https://doi.org/10.5800/GT-2012-3-3-0070

For citation:


Seminsky K.Z. INTERNAL STRUCTURE OF FAULT ZONES: SPATIAL AND TEMPORAL EVOLUTION STUDIES ON CLAY MODELS. Geodynamics & Tectonophysics. 2012;3(3):183-194. (In Russ.) https://doi.org/10.5800/GT-2012-3-3-0070

Просмотров: 354


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)